2013阿坝中考数学学习辅导:分式与二次根式

编辑:sx_chenzf

2014-01-14

【摘要】各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家整理了2013阿坝中考数学学习辅导:分式与二次根式,希望同学们牢牢掌握,不断取得进步。

分式与分式方程  

1指数的扩充

2分式和分式的基本性质

设f,g是一元或多元多项式,g的次数高于零次,则称f,g之比f/g为分式

分式的基本性质分数的分子与分母都乘以或除以同一个不等于0的数,分数的值不变

3分式的约分和通分

分式的约分是将分子与分母的公因式约去,使分式化简

如果一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也就是最简分式

对于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分

4分式的运算

5分式方程

方程的两遍都是有理式,这样的方程成为有理方程如果有理方程中含有分式,则称为分式方程

二次根式  

1根式

在实数范围内,如果n个x相乘等于a,n是大于1的整数,则称x为a的n次方根

含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式

2最简二次根式与同类根式

具备下列条件的二次根式称为最简二次根式:(1)被开方式的每一个因式的指数都小于开方次数(2)根号内不含有分母

如果几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根式叫做同类根式

3二次根式的运算

4无理方程

根号里含有未知数的方程叫做无理方程。

以上就是由威廉希尔app 为您提供的2013阿坝中考数学学习辅导:分式与二次根式,愿您能写出优秀的论文。

相关推荐:

2013阿坝中考数学学习辅导:多项式的四则运算

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。