编辑:sx_liss
2014-06-07
【摘要】威廉希尔app 为各位考生整理了2014名师指点:中考数学题型精解,希望可以帮考生一臂之力。
如图,在半径为6,圆心角为90o的扇形OAB的上,有一动点P:PH⊥OA:垂足为H:△OPH的重心为G。
(1)当点P在AB上运动时,线段GO:GP:GH中,有无长度保持不变的线段?如有,请指出该线段,并求出其长度;(2)设PH=x: GP=y:求y关于x的函数解析式,并写出函数的定义域;(3)如果△PGH是等腰三角形,试求出线段PH的长。
分析:第(1)小题:在Rt△POH中,P点在动,△POH的位置也在动,但是斜边OP的长度保持不变。由于G为重心,所以延长HG交OP的中点M,HM=3,GH=×3=2。
第(2)小题,要求P H=x与G P=y的函数关系式。由于这不是直角三角形,所以延长PG交OH于N点,则△PNH为直角三角形。因为P G=y,则GN=y,∴PN=y。而OH=√36-x2。在Rt△PNH中:PN2=NH2+PH2化简后得:y=√36+3x20
第(3)小题是一道分类讨论题,如果△PGH是等腰三角形,试求出线段PH的长。PH就是第(2)小题中,函数y=√363x2中的x,GP是y,GH是常量2。若PH=GP,即x=y,x=√363x2。若PH=GH,而GH=2,所以PH=2。近年来最后第二题是围绕着坐标系内的几何问题展开的。
【总结】威廉希尔app 中考频道精心整理了2014名师指点:中考数学题型精解,可登录中考数学名师指点学习更多知识。
相关链接
标签:中考数学名师指点
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。