编辑:sx_zhangjh
2014-04-22
中考数学两类综合题解题方法
(一)函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有①一次函数 (包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题 是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前,不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究。
探索研究的一般类型有:①在什么条件下三角形是等腰三角形、直角三角形;②四边形是菱形、梯形等;③探索两个三角形满足什么条件相似;④探究线段之间的位置关系等;⑤探索面积之间满足一定关系求x的值等;⑥直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等……求定义域主要是寻找图形的特殊位置 (极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
今年的数学综合题启示我们在进行综合思维的时候要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,方程函数是工具,计算推理严谨,创新品质得提高。
相关推荐
标签:中考数学名师指点
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。