2013中考数学高分冲刺考点解析:直线和圆的位置关系

编辑:lvzw

2012-11-16

编者按:威廉希尔app 小编为大家收集了“2013中考数学高分冲刺考点解析:直线和圆的位置关系”,供大家参考,希望对大家有所帮助!

知识点:

直线和圆的位置关系、切线的判定和性质、三角形的内切圆、切线长定理、弦切角的定理、相交弦、切割线定理

大纲要求:

1.掌握直线和圆的位置关系的性质和判定;

2.掌握判定直线和圆相切的三种方法并能应用它们解决有关问题:(1)直线和圆有唯一公共点;(2)d=R;(3)切线的判定定理(应用判定定理是满足一是过半径外端,二是与这半径垂直的二个条件才可判定是圆的切线)

3.掌握圆的切线性质并能综合运用切线判定定理和性质定理解决有关问题:(1)切线与圆只有一个公共点;(2)圆心到切线距离等于半径;(3)圆的切线垂直于过切点的半径;(4)经过圆心且垂直于切线的直线必过切点;(5)经过切点且垂直于切线的直线必过圆心;(6)切线长定理;(7)弦切角定理及其推论。

4.掌握三角形外切圆及圆外切四边形的性质及应用;

5.注意:(1)当已知圆的切线时,切点的位置一般是确定的,在写条件时应说明直线和圆相切于哪一点,辅助线是作出过确定的半径;当证明直线是圆的切线时,如果已知直线过圆上某一点则可作出这一点的半径证明直线垂直于该半径;即为“连半径证垂直得切线”;若已知条件中未明确给出直线和圆有公共点时,则应过圆心作直线的垂线,证明圆心到直线的距离等于半径,即为:“作垂直证半径得切线”。(2)见到切线要想到它垂直于过切点的半径;若过切点有垂线则必过圆心;过切点有弦,则想到弦切角定理,想到圆心角、圆周角性质,可再联想同圆或等圆弧弦弦心距等的性质应用。(3)任意三角形有且只有一个内切圆,圆心为这个三角形内角平分线的交点。

以上就是威廉希尔app 为大家提供的“2013中考数学高分冲刺考点解析:直线和圆的位置关系”希望能对考生产生帮助,更多资料请咨询威廉希尔app 中考频道。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。