数学因式分解方法:双十字相乘法与拆法添项法

编辑:lvzw

2012-11-15

编者按:威廉希尔app 小编为大家收集了“数学因式分解方法:双十字相乘法与拆法添项法”,供大家参考,希望对大家有所帮助!

5、双十字相乘法

在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:

(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图

(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含x的一次项

例5分解因式

①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2

③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2

解①原式=(2x-3y+1)(2x+y-3)

2x-3y1

2xy-3

②原式=(x-5y+2)(x+2y-1)

x-5y2

x2y-1

③原式=(b+1)(a+b-2)

0ab1

ab-2

④原式=(2x-3y+z)(3x+y-2z)

2x-3yz

3x-y-2z

说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。

如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)

④式三个字母满足二次六项式,把-2z2看作常数分解即可:

6、拆法、添项法

对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之差或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是唯一,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。

例6分解因式:x3+3x2-4

解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3)

法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4)

法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4)

法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)

法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等

解(选择法四)原式=x3-x2+4x2-4

=x2(x-1)+4(x-1)(x+1)

=(x-1)(x2+4x+4)

=(x-1)(x+2)2

以上就是威廉希尔app 为大家提供的“数学因式分解方法:双十字相乘法与拆法添项法”希望能对考生产生帮助,更多资料请咨询威廉希尔app 中考频道。

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。