2016年中考数学模拟试卷练习(带答案)

编辑:

2016-03-09

12.(2013•白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.

(1)BD与CD有什么数量关系,并说明理由;

(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.

12.解:(1)BD=CD.

理由如下:∵AF∥BC,

∴∠AFE=∠DCE,

∵E是AD的中点,

∴AE=DE,

在△AEF和△DEC中, ,

∴△AEF≌△DEC(AAS),

∴AF=CD,

∵AF=BD,

∴BD=CD;

(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.

理由如下:∵AF∥BD,AF=BD,

∴四边形AFBD是平行四边形,

∵AB=AC,BD=CD,

∴∠ADB=90°,

∴▱AFBD是矩形.

13.(2013•无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.

(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;

( 2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)

13.(1)以①②作为条件构成的命题是真命题,

证明:∵AB∥CD,

∴△AOB∽△COD,

∴ ,

∵AO=OC,

∴OB=OD,

∴四边形ABCD是平行四边形.

(2)根据①③作为条件构成的命题是假命题,即如果有一组对边平行,而另一组对边相等的四边形时平行四边形,如等腰梯形符合,但不是平行四边形;

根据②③作为条件构成的命题是假命题,即如果一个四边形ABCD的对角线交于O,且OA=OC,AD=BC,那么这个四边形时平行四边形,如图,

根据已知不能推出OB=OD或AD∥BC或AB=DC,即四边形不是平行四边形.

14.(2013•宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).

(1)求抛物线的解析式和顶点坐标;

(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.

14.解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),

可设抛物线解析式为y=a(x-1)(x-3),

把C(0,-3)代入得:3a=-3,

解得:a=-1,

故抛物线解析式为y=-(x-1)(x-3),

即y=-x2+4x-3,

∵y=-x2+4x-3=-(x-2)2+1,

∴顶点坐标(2,1);

(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。