编辑:
2016-04-05
9. (2014•湖南邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( )
A. 45° B. 54° C. 40° D. 50°
考点: 平行线的性质;三角形内角和定理
分析: 根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.
解答: 解:∵∠B=46°,∠C=54°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,
∵AD平分∠BAC,
∴∠BAD= ∠BAC= ×80°=40°,
∵DE∥AB,
∴∠ADE=∠BAD=40°.
故选C.
点评: 本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.
10.(2014•台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?( )
A.24 B.30 C.32 D.36
分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.
解:∵直线M为∠ABC的角平分线,
∴∠ABP=∠CBP.
∵直线L为BC的中垂线,
∴BP=CP,
∴∠CBP=∠BCP,
∴∠ABP=∠CBP=∠BCP,
在△ABC中,3∠ABP+∠A+∠ACP=180°,
即3∠ABP+60°+24°=180°,
解得∠ABP=32°.
故选C.
点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.
11. (2014•湖北宜昌,第6题3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是( )
A. 5 B. 10 C. 11 D. 12
考点: 三角形三边关系.
分析: 根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.
解答: 解:根据三角形的三边关系,得
第三边大于:8﹣3=5,而小于:3+8=11.
则此三角形的第三边可能是:10.
故选:B.
点评: 本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.
12. (2014•河北,第3题2分)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=( )
A. 2 B. 3 C. 4 D. 5
考点: 三角形中位线定理.
分析: 根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.
解答: 解:∵D,E分别是边AB,AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE=2×2=4.
故选C.
点评: 本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。