编辑:
2016-03-22
解析:(1) 如图1,
∵BE⊥l , l ∥k ,
∴∠AEB=∠BFC=90°,
又四边形ABCD是正方形,
∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,
∴⊿ABE≌⊿BCF(AAS),
∴AE=BF=1 , ∵BE=d1+d2=3 , ∴AB= ,
∴正方形的边长是 .
(2)如图2,3,
⊿ABE∽⊿BCF,
∴ 或
∵BF=d3=1 ,
∴AE= 或
∴AB= 或
AB=
∴矩形ABCD的宽为 或 .
(注意:要分2种情况讨论)
(3)如图4,
连接AC,
∵四边形ABCD是菱形,
∴AD=DC,
又∠ADC=60°,
∴⊿ADC是等边三角形,
∴AD=AC,
∵AE⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,
∵⊿AEF是等边三角形, ∴ AF=AE,
∴⊿AFD≌⊿AEC(HL), ∴EC=DF.
(4)如图5,
当2
理由如下:
连接AM,
∵AB⊥k , ∠ACD=90°,
∴∠ABE=∠ACD=90°,
∵⊿ABC是等边三角形,
∴AB=AC ,
已知AE=AD, ∴⊿ABE≌⊿ACD(HL),∴BE=CD;
在Rt⊿ABM和Rt⊿ACM中,
,∴Rt⊿ABM≌Rt⊿ACM(HL),
∴ BM=CM ;
∴ME=MD,
∴ , ∴ED∥BC.
4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:
①存在函数,其图象经过(1,0)点;
②函数图象与坐标轴总有三个不同的交点;
③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.
教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.
这篇2016中考数学备考专项练习的内容,希望会对各位同学带来很大的帮助。
相关推荐
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。