编辑:
2016-02-03
9. (2014•江苏徐州,第7题3分)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )
A.矩形 B. 等腰梯形
C.对角线相等的四边形 D. 对角线互相垂直的四边形
考点: 中点四边形.
分析: 首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.
解答: 解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,
∴EF=FG=CH=EH,BD=2EF,AC=2FG,
∴BD=AC.
∴原四边形一定是对角线相等的四边形.
故选C.
点评: 此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.
10. (2014•山东淄博,第9题4分)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是( )
A. 甲乙丙 B. 甲丙乙 C. 乙丙甲 D. 丙甲乙
考点: 正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.
分析: 根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.
解答: 解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=90°,
甲行走的距离是AB+BF+CF=AB+BC=2AB;
乙行走的距离是AF+EF+EC+CD;
丙行走的距离是AF+FC+CD,
∵∠B=∠ECF=90°,
∴AF>AB,EF>CF,
∴AF+FC+CD>2AB,AF+FC+CD
∴甲比丙先到,丙比乙先到,
即顺序是甲丙乙,
故选B.
点评: 本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.
11.(2014•福建福州,第9题4分)如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为【 】
A.45° B.55° C.60° D.75°
12.(2014•甘肃兰州,第7题4分)下列命题中正确的是( )
A. 有一组邻边相等的四边形是菱形
B. 有一个角是直角的平行四边形是矩形
C. 对角线垂直的平行四边形是正方形
D. 一组对边平行的四边形是平行四边形
考点: 命题与定理.
分析: 利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.
解答: 解:A、一组邻边相等的平行四边形是菱形,故选项错误;
B、正确;
C、对角线垂直的平行四边形是菱形,故选项错误;
D、两组对边平行的四边形才是平行四边形,故选项错误.
故选B.
点评: 本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。