2016年中考数学模拟试卷及答案

编辑:

2015-10-28

3、(2014年山东烟台第11题)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.

其中正确的结论有(  )

A.1个 B. 2个 C. 3个 D. 4个

【分析】:根据抛物线的对称轴为直线x=﹣ =2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.

【解答】:∵抛物线的对称轴为直线x=﹣ =2,∴b=﹣4a,即4a+b=0,所以①正确;

∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;

∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,

而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,

∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;

∵对称轴为直线x=2,

∴当﹣12时,y随x的增大而减小,所以④错误.故选B.

【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.

4、(2014•威海第11题)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:

①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

|||

【考点】: 二次函数图象与系数的关系.

【分析】: 由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

【解答】: 解:抛物线与y轴交于原点,c=0,故①正确;

该抛物线的对称轴是: ,直线x=﹣1,故②正确;

当x=1时,y=2a+b+c,

∵对称轴是直线x=﹣1,

∴ ,b=2a,

又∵c=0,

∴y=4a,故③错误;

x=m对应的函数值为y=am2+bm+c,

x=﹣1对应的函数值为y=a﹣b+c,又x=﹣1时函数取得最小值,

∴a﹣b+c

∵b=2a,

∴am2+bm+a>0(m≠﹣1).故④正确.

故选:C.

【点评】: 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

5、(2014•宁波第12题)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )

A. (﹣3,7) B. (﹣1,7) C. (﹣4,10) D. (0,10)

【考点】: 二次函数图象上点的坐标特征;坐标与图形变化-对称.

【分析】: 把点A坐标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.

【解答】: 解:∵点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,

∴(a﹣2b)2+4×(a﹣2b)+10=2﹣4ab,

a2﹣4ab+4b2+4a﹣8ab+10=2﹣4ab,

(a+2)2+4(b﹣1)2=0,

∴a+2=0,b﹣1=0,

解得a=﹣2,b=1,

∴a﹣2b=﹣2﹣2×1=﹣4,

2﹣4ab=2﹣4×(﹣2)×1=10,

∴点A的坐标为(﹣4,10),

∵对称轴为直线x=﹣ =﹣2,

∴点A关于对称轴的对称点的坐标为(0,10).

故选D.

【点评】: 本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。