编辑:
2015-08-12
解答:解:(1)把点B(﹣2,﹣2)的坐标,代入y= ,得:
﹣2= ,∴k=4.即双曲线的解析式为:y= .
设A点的坐标为(m,n).∵A点在双曲线上,∴mn=4.①
又∵tan∠AOx=4,∴ =4,即m=4n.②
又①,②,得:n2=1 ,∴n=±1.
∵A点在第一象限,∴n=1,m=4,∴A点的坐标为(1,4)
把A、B点的坐标代入y=ax2+bx,得: 解得a=1,b=3;
∴抛物线的解析式为:y=x2+3
(2)∵AC∥x轴,∴点C的纵坐标y=4,
代入y=x2+3x,得方程x2+3x﹣4=0,解得x1=﹣4,x2=1(舍去).
∴C点的坐标为(﹣4,4),且AC=5,
又△ABC的高为6,∴△ABC的面积= ×5×6=15;
(3)存在D点使△ABD的面积等于△ABC的面积.
过点C作CD∥AB交抛物线于另一点D.
因为直线AB相应的一次函数是:y=2x+2,且C点的坐标为(﹣4,4),CD∥AB,
所以直线CD相应的一次函数是:y= 2x+12.
这篇2015年中考数学模拟试卷就为大家分享到这里了。希望对大家有所帮助!
相关推荐
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。