编辑:
2013-11-28
19.(2012•济宁)问题情境:
用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?
建立模型:
有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
解决问题:
根据以上步骤,请你解答“问题情境”.
考点: 一次函数的应用;规律型:图形的变化类。
专题: 阅读型。新 课标 第 一网
分析: 画出相关图形后可得这些点在一条直线上,设出直线解析式,把任意两点代入可得直线解析式,进而把x=2012代入可得相应的棋子数目.
解答: 解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13)依次连接以上各点,所有各点在一条直线上,
设直线解析式为y=kx+b,把(1,4)、(2,7)两点坐标代入得
解得 ,
所以y=3x+1,
验证:当x=3时,y=10.
所以,另外一点也在这条直线上.
当x=2012时,y=3×2012+1=6037.
答:第2012个图有6037枚棋子.
点评: 考查一次函数的应用;根据所给点画出的相关图形判断出相应的函数是解决本题的突破点.
20.(2012•济宁)如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.
(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.
(2)求证:PC是⊙O的切线.
考点: 切线的判定与性质;全等三角形的判定与性质;三角形中位线定理;圆周角定理。
分析: (1)根据垂径定理可以得到D是AC的中点,则OD是△ABC的中位线,根据三角形的中位线定理可以得到OD∥BC,CD= BC;
(2)连接OC,设OP与⊙O交于点E,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可等证.
解答: (1)猜想:OD∥BC,CD= BC.
证明:∵OD⊥AC,
∴AD=DC
∵AB是⊙O的直径,
∴OA=OB…2分
∴OD是△ABC的中位线,
∴OD∥BC,OD= BC
(2)证明:连接OC,设OP与⊙O交于点E.
∵OD⊥AC,OD经过圆心O,
∴ ,即∠AOE=∠COE
在△OAP和△OCP中,
∵OA=OC,OP=OP,
∴△OAP≌△OCP,
∴∠OCP=∠OAP
∵PA是⊙O的切线,
∴∠OAP=90°.
∴∠OCP=90°,即OC⊥PC
∴PC是⊙O的切线.
点评: 本题考查了切线的性质定理以及判定定理,三角形的中位线定理,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.
21.(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是 O(0,0) ,旋转角是 90 度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
考点: 作图-旋转变换;勾股定理的证明。
专题: 作图题。
分析: (1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
解答: 解:(1)旋转中心坐标是O(0,0),旋转角是90度;…2分
(2)画出的图形如图所示;…6分
(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.
∵S正方形CC1C2C3=S正方形AA1A2B+4S△ABC,
∴(a+b)2=c2+4× ab,
即a2+2ab+b2=c2+2ab,
∴a2+b2=c2.
点评: 本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.
22.(2012•济宁)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.
(1)请你用画树形图或列表的方法列举出可能出现的所有结果;
(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;
(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.
考点: 列表法与树状图法;平面镶嵌(密铺)。
专题: 图表型。
分析: (1)列出图表即可得到所有的可能情况;
(2)根据平面镶嵌的定义,能构成平面镶嵌的多边形有正三角形与正方形,正三角形与正六边形,然后根据概率公式列式计算即可得解;
(3)对两种平面镶嵌的情况,根据方程代入数据整理,再根据p、q都是整数解答.
解答: 解:(1)所有出现的结果共有如下12种:…3分
第一次/第二次 A B C D
A BA CA DA
B AB CB DB
C AC BC DC
D AD BD CD
所以P(两次抽取的正多边形能构成平面镶嵌)= = ;…6分
(3)当正三角形和正方形构成平面镶嵌时,
则有60p+90q=360,即2p+3q=12.
因为p、q是正整数,
所以p=3,q=2,…7分
当正三角形和六边形构成平面镶嵌时,
则有60p+120q=360,即p+2q=6.
因为p、q是正整数,
所以p=4,q=1或p=2,q=2.
点评: 本题考查了列表法或树状图法求概率,以及平面镶嵌的知识,概率=所求情况数与总情况数之比,平面镶嵌的条件:各个顶点处内角和恰好为360°.
23.(2012•济宁)如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
考点: 二次函数综合题。
专题: 压轴题;转化思想。
分析: (1)该抛物线的解析式中有两个待定系数,只需将点A、B的坐标代入解析式中求解即可.
(2)首先设出点P的坐标,由PD∥AC得到△BPD∽△BAC,通过比例线段可表示出BD的长;BC的长易得,根据题干给出的条件BP2=BD•BC即可求出点P的坐标.
(3)由于PD∥AC,根据相似三角形△BPD、△BAC的面积比,可表示出△BPD的面积;以BP为底,OC为高,易表示出△BPC的面积,△BPC、△BPD的面积差为△PDC的面积,通过所列二次函数的性质,即可确定点P的坐标.
解答: 解:(1)由题意,得 ,
解得 ,
∴抛物线的解析式为y= ﹣x﹣4;
(2)设点P运动到点(x,0)时,有BP2=BD•BC,
令x=0时,则y=﹣4,
∴点C的坐标为(0,﹣4).
∵PD∥AC,
∴△BPD∽△BAC,
∴ .
∵BC= ,
AB=6,BP=x﹣(﹣2)=x+2.
∴BD= = = .
∵BP2=BD•BC,
∴(x+2)2= ,
解得x1= ,x2=﹣2(﹣2不合题意,舍去),
∴点P的坐标是( ,0),即当点P运动到( ,0)时,BP2=BD•BC;
(3)∵△BPD∽△BAC,
∴ ,
∴ ×
S△BPC= ×(x+2)×4﹣
∵ ,
∴当x=1时,S△BPC有最大值为3.
即点P的坐标为(1,0)时,△PDC的面积最大.
点评: 该题综合了相似三角形、图形面积的求法等知识,难度系数大,(3)题中,将所求三角形的面积进行适当的转化是解题的关键所在.
总结:以上就是中考数学试题及解析的全部内容,希望能帮助大家巩固复习学过的知识,在中考中取得优异的成绩,更多精彩内容请继续关注威廉希尔app !
相关推荐:
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。