编辑:sx_zhangwl
2013-01-07
【编者按】为了丰富同学们的学习生活,威廉希尔app 中考频道为同学们搜集整理了中考数学模拟题:2012年咸宁市中考数学试题(附答案和解释),供大家参考,希望对大家有所帮助!
2012年咸宁市中考数学试题(附答案和解释)
考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.
2.考生答题前,请将自己的学校、姓名、准考证号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺 序在答题卷上各题目的答题区域内作答,写在试题卷上无效.
一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)
1. 的相反数是( ).
A. B.8 C. D.
2.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为( ).
A.3.6×102 B.360×104 C.3.6×104 D.3.6×106
3.某班团支部统计了该班甲、乙、丙、丁四名同
学在5月份“书香校园”活动中的课外阅读时
间,他们平均每天课外阅读时间 与方差s2如
右表所示,你认为表现最好的是( ).
A .甲 B.乙
C.丙 D.丁
4.不等式组 的解集在数轴上表示为( ).
5.下列运算正确的是( ).
A. B.
C. D.
6.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,
相似比为1∶ ,点A的坐标为(1,0),则E点的坐标为( ).
A.( ,0) B.( , ) C.( , ) D.(2,2)
7.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分
的面积为( ).
A. π2 B. 2π3 C. π2 D. 2π3
8.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿 过“墙”上的三个空洞,则该几何体为( ).
二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的位置)
9.因式分解: .
10.在函数 中,自变量x的取值范围是 .
11.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,
让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图.
如果该校有1200名学生,则喜爱跳绳 的学生约有 人.
12.如图,某公园入口处原有三级台阶,每级台阶高
为18cm,深为30c m,为方便残疾人士,拟将台
阶改为斜坡,设台阶的起点为A,斜坡的起始点
为C,现设计斜坡BC的坡度 ,则AC的
长度是 cm.
13.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需 元.
14.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量
角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺
时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点
E,第35秒时,点E在量角器上对应的读数是 度.
15.如图,在梯形ABCD中,AD∥BC, ,BE平分∠ABC
且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB
交BC于G,当 , 时,四边形BGEF的周长为 .
16.对于二次函数 ,有下列说法:
①它的图象与 轴有两个公共点;
②如果当 ≤1时 随 的增大而减小,则 ;
③如果将它的图象向左平移3个单位后过原点,则 ;
④如果当 时的函数值与 时的函数值相等,
则当 时的函数值为 .
其中正确的说法是 .(把你认为正确说法的序号都填上)
三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的位置)
17.(本题满分6分)
计算: .
18.(本题满分8分)
解方程: .
19.(本题满分8分)
如图,一次函数 的图象与反比例函数
的图象交于A(1,6),B( ,2)两点.
(1)求一次函数与反比例函数的解析式;
(2)直接写出 ≥ 时 的取值范围.
20.(本题满分9分)
某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是 ,你赞成他的观点吗?请用列表法或画树形图法分析说明.
21.(本题满分9分)
如图,AB是⊙O的直径,点E是AB上的一点,CD是过
E点的弦,过点B的切线交AC的延长线于点F,BF∥CD,
连接BC.
(1)已知 , ,求弦CD的长;
(2)连接BD,如果四边形BDCF为平行四边形,则点E位
于AB的什么位置?试说明理由.
22.(本 题满分10分)
某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A→D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.
(1)求甲在每个景点逗留的时间,并补全图象;
(2)求C,E两点间的路程;
(3)乙游客与甲同时从
A处出发,打算游
完三个景点后回到
A处,两人相约先
到者在A处等候,
等候时间不超过10
分钟.如果乙的步
行速度为3km/h,在
每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.
23.(本题满分10分)
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若 ,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且 , .
理解与作图:
(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.
计算与猜想:
(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?
启发与证明:
(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
24.(本题满分12分)
如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿 轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转 ,得到线段AB.过点B作 轴的垂线,垂足为E,过点C作 轴的垂线,交直线BE于点D.运动时间为 秒.
(1)当点B与点D重合时,求 的值;
(2)设△BCD的面积为S,当 为何值
时, ?
(3)连接MB,当MB∥OA时,如果抛
物线 的顶点在△ABM
内部(不包括边),求a的取值范围.
湖北省咸宁市2012年初中毕业生学业考试
数学试题参考答案及评分说明
说明:
1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.
2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.
3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.
4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
5.每题评分时只给整数分数.
一.精心选一选(每小题3分,本大题满分24分)
题号 1 2 3 4 5 6 7 8
答案 B D C D B C A A
二.细心填一填(每小题3分,本大题满分24分)
9. 10. 11.360 12.210 13.1100
14.140 15.28 16.①④(多填、少填或错填均不给分)
三.专心解一解(本大题满分72分)
17.解:原式 4分
. 6分
(说明:第一步中写对 得1分,写对 得2分,写对 得1分,共4分)
18.解:原方程即: . 1分
方程两边同时乘以 ,得
. 4分
化简 ,得 .
解得 . 7分
检验: 时 , 不是原分式方程的解,原分式方程无解.
8分
19.解:(1)∵点A(1,6),B( ,2)在 的图象上,
∴ , . 1分
, . 2分
∵点A(1,6),B(3,2)在函数 的图 象上,
∴ 4分
解这个方程组,得
∴一次函数的解析 式为 ,反比例函数的解析式为 . 6分
(2)1≤ ≤3. 8分
20.解:不赞成小蒙同学的观点. 1分
记七、八年级两名同学为A,B,九年级两名同学为C,D.[来源:学.科.网Z.X.X.K]
画树形图 分析如下:
5分
由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为 . 9分
21.(1)解:∵BF与⊙O相切,
∴ . 1分
而BF∥CD,∴ .
又∵AB是直径,∴ . 2分
连接CO,设 ,则 .
由勾股定理可知: ,
即 , . 4分
因此 . 5分
(2)∵四边形BDCF为平行四边形,
∴ .
而 , ∴ . 7分
∵BF∥CD, ∴△AEC∽△ABF. 8分
∴ . ∴点E是AB的中点. 9分
22.(1)解法一:由图2可知甲步行的速度为 (km/h) 1分
因此甲在每个景点逗留的时间为
(h) 3分
解法二:甲沿A→D步行时s与t的函数关系式为 . 1分
设甲沿D→C步行时s与t的函数关系式为 .
则 .
∴ .
∴ . 2 分
当 时, , .
因此甲在每个景点逗留的时间为 (h). 3分
补全图象如下: 5分
(2)解法一:甲步行的总时间为 (h).
∴甲的总行程为 (km). 7分
∴C,E两点间的路程为 (km).
8分
解法二:设甲沿C→E→A步行时
s与t的函数关系式为 .
则 .
∴ .
∴ . 6分
当 时, . 7分
∴C,E两点间的路程为 (km). 8分
(3)他们的约定能实现.
乙游览的最短线路为:A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总行程为 (km). 9分
∴乙游完三个景点后回到A处的总时间为 (h).
∴乙比甲晚6分钟到A处. 10分
(说明:图象的第四段由第二段平移得到,第五段与第一、三段平行,且右端点的横坐标为3,如果学生补全的图象可看出这些,但未标出2.3也可得2分.第3问学生只说能实现约定,但未说理由不给分.)
23.(1)作图如下: 2分
(2)解:在图2中, ,
∴四边形EFGH的周长为 . 3分
在图3中, , .
∴ 四边形EFGH的周长为 . 4分
猜想:矩形ABCD的反射四边形的周长为定值. 5分
(3)证法一:延长GH交CB的延长线于点N.
∵ , ,
∴ .
而 ,
∴Rt△FCE≌Rt△FCM.
∴ , .
6分
同理: , .
∴ . 7分
∵ , ,
∴ . ∴ . 8分
过点G作GK⊥BC于K,则 . 9分
∴ .
∴四边形EFGH的周长为 . 10分
证法二:∵ , , ∴ .
而 , ∴Rt△FCE≌Rt△FCM.
∴ , . 6分
∵ , ,
而 , ∴ .
∴HE∥GF. 同理:GH∥EF.
∴四边形EFGH是平行四边形. 7分
∴ . 而 ,
∴Rt△FDG≌Rt△HBE. ∴ . 8分
过点G作GK⊥BC于K,则 . 9分
∴ .
∴四边形EFGH的周长为 . 10分
24.解:(1)∵ , ,
∴ .
∴Rt△CAO∽Rt△ABE. 2分
∴ .
∴ .∴ . 3分
(2)由Rt△CAO∽Rt△ABE可知: , . 4分
当0< <8时, .
∴ . 6分
当 >8时, .
∴ , (为负数,舍去).
当 或 时, . 8分
(3)过M作MN⊥ 轴于N,则 .
当MB∥OA时, , . 9分
抛物线 的顶点坐标为(5, ). 10分
它的顶点在直线 上移动.
直线 交MB于点(5,2),交AB于点(5,1). 11分
∴1< <2.
∴ < < . 12分
2012中考科目:
【中考语文】【中考数学】【中考英语】【中考物理】【中考化学】
【中考政治】【中考历史】【中考生物】【中考地理】 【中考体育】
2012中考考前:
【中考动态】【中考心理辅导】 【中考家长】【中考饮食】 【中考政策】
2012中考考后:
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。