编辑:
2012-12-11
A.45º B.60º C.90º D.180º
【答案】C。
【考点】余角和补角、
【分析】根据互余两角之和为90°,互补两角之和为180°,结合题意即可得出答案:
由题意得,∠α+∠β=180°,∠α+∠γ=90°,
两式相减可得:∠β-∠γ=90°。故选C。
11. (2012湖北襄阳3分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为【 】
A.20° B.25° C.30° D.35°
【答案】A。
【考点】平行线的性质。
【分析】如图,过点B作BD∥l,
∵直线l∥m,∴BD∥l∥m。
∵∠1=25°,∴∠4=∠1=25°。
∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°。
∴∠2=∠3=20°。故选A。
12. (2012湖北襄阳3分)下列图形中,是中心对称图形,但不是轴对称图形的是【 】
A. B. C. D.
【答案】A。
【考点】中心对称图形,轴对称图形。102
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,B选项是轴对称也是中心对称图形,C、D选项是轴对称但不是中心对称图形,A选项只是中心对称图形但不是轴对称图形。故选A。
二、填空题
1. (2012湖北黄石3分)将下列正确的命题的序号填在横线上 ▲ .
①若n大于2的正整数,则n边形的所有外角之和为 .
②三角形三条中线的交点就是三角形的重心.
③证明两三角形全等的方法有:SSS,SAS,ASA,SSA及HL等.
3. (2012湖北随州4分)平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若平面内的不同的n个点最多可确定15条直线,则n的值为 ▲ .
【答案】6。
【考点】分类归纳(图形的变化),直线的确定,解一元二次方程。
【分析】根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可:
∵平面内不同的两点确定1条直线, ,
平面内不同的三点最多确定3条直线,即 ,
平面内不同的四点最多确定6条直线,即 ,
∴平面内不同的n点最多确定 (n≥2)条直线。
∴平面内的不同n个点最多可确定15条直线时, ,解得n=-5(舍去)或n=6。
三、解答题
1. (2012湖北宜昌7分)如图,已知E是平行四边形ABCD的边AB上的点,连接DE.
(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;
(要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)在(1)的条件下,求证:△ADE≌△CBF.
【答案】(1)解:作图如下:
(2)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC。
∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA)。
【考点】作图(复杂作图),平行四边形的性质,全等三角形的判定。1419956
【分析】(1)以点C为圆心,AC长为半径画弧,交CD于点F,连接BF,则∠CBF=∠ADE。
(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF。
2. (2012湖北荆州8分)如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、H.
(1)请根据题意用实线补全图形;
(2)求证:△AFB≌△AGE.
【答案】解:(1)画图,如图:
(2)证明:由题意得:△ABC≌△AED。
∴AB=AE,∠ABC=∠E。
在△AFB和△AGE中,∵∠ABC=∠E,AB=AE,∠α=∠α,
∴△AFB≌△AGE(ASA)。
【考点】翻折变换(折叠问题),旋转的性质,全等三角形的判定。
【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系。
(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△AGE。
2012中考科目:
【中考语文】【中考数学】【中考英语】【中考物理】【中考化学】
【中考政治】【中考历史】【中考生物】【中考地理】 【中考体育】
2012中考考前:
【中考动态】【中考心理辅导】 【中考家长】【中考饮食】 【中考政策】
2012中考考后:
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。