编辑:
2012-12-11
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA= ,求⊙O的半径.
【答案】解:(1)证明:连接OB,
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC。
又∵CD⊥OA,
∴∠A+∠AED=∠A+∠CEB=90°。
∴∠OBA+∠ABC=90°。∴OB⊥BC。
∴BC是⊙O的切线。
(2)连接OF,AF,BF,
∵DA=DO,CD⊥OA,
∴△OAF是等边三角形。
∴∠AOF=60°。
∴∠ABF= ∠AOF=30°。
(3)过点C作CG⊥BE于点G,由CE=CB,
∴EG= BE=5。
易证Rt△ADE∽Rt△CGE,
∴sin∠ECG=sin∠A= ,
∴ 。
∴ 。
又∵CD=15,CE=13,∴DE=2,
由Rt△ADE∽Rt△CGE得 ,即 ,解得 。
∴⊙O的半径为2AD= 。
【考点】等腰(边)三角形的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,勾股定理,相似三角形的判定和性质,锐角三角函数定义。
【分析】(1)连接OB,有圆的半径相等和已知条件证明∠OBC=90°即可证明BC是⊙O的切线。
(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数。
(3)过点C作CG⊥BE于点G,由CE=CB,可求出EG= BE=5,由Rt△ADE∽Rt△CGE和勾股定理求出DE=2,由Rt△ADE∽Rt△CGE求出AD的长,从而求出⊙O的半径。
6. (2012湖北咸宁9分)如图,AB是⊙O的直径,点E是AB上的一点,CD是过E点的弦,过点B的切线交AC的延长线于点F,BF∥CD,连接BC.
(1)已知AB=18,BC=6,求弦CD的长;
(2)连接BD,如果四边形BDCF为平行四边形,则点E位于AB的什么位置?试说明理由.
【答案】解:(1)∵BF与⊙O相切,∴BF⊥AB。
又∵BF∥CD,∴CD⊥AB。
又∵AB是直径,∴CE=ED。
连接CO,设OE=x,则BE=9-x。
由勾股定理得: ,
即 ,解得 。
∴ 。
(2)∵四边形BDCF为平行四边形,∴BF=CD。
而 ,∴ 。
∵BF∥CD, ∴△AEC∽△ABF。∴ 。∴点E是AB的中点。
【考点】切线的性质,垂径定理,勾股定理,平行四边形的性质。相似三角形的判定和性质。
【分析】(1)由BF与⊙O相切,根据切线的性质,可得BF⊥AB,又由BF∥CD,易得CD⊥AB,由垂径定理即可求得CE=DE,然后连接CO,设OE=x,则BE=9-x,由勾股定理即可求得OE的长,从而求得CD的长。
(2)由四边形BDCF为平行四边形,根据平行四边形的性质,即可CD=BF,又由△AEC∽△ABF,即可求得点E是AB的中点。
7. (2012湖北荆州9分)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)
【答案】解:如图,连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.
∵OA=OB=5m,AB=8m,
∴AF=BF= AB=4(m),∠AOB=2∠AOF,
在Rt△AOF中, ,
∴∠AOF=53°,∴∠AOB=106°。
∵ (m),由题意得:MN=1m,∴FN=OM-OF+MN=3(m)。
∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE。
在Rt△ADE中, ,∴DE=2m,DC=12m。
∴ (m2)。
答:U型槽的横截面积约为20m2。
【考点】解直角三角形的应用,垂径定理,勾股定理,等腰梯形的性质,锐角三角函数定义。
【分析】连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB。根据垂径定理求出AF,再在Rt△AOF中利用锐角三角函数的定义求出∠AOB,由勾股定理求出OF,根据四边形ABCD是等腰梯形求出AE的长,再由 即可得出结果。
8. (2012湖北荆州12分)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).
(1)求抛物线的解析式及顶点B的坐标;
(2)求证:CB是△ABE外接圆的切线;
(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;
(4)设△AOE沿x轴正方向平移t个单位长度(0
【答案】解:(1)∵抛物线经过点A(3,0),D(﹣1,0),∴设抛物线解析式为y=a(x﹣3)(x+1)。
将E(0,3)代入上式,解得:a=﹣1。
∴抛物线的解析式为y=-(x﹣3)(x+1),即y=﹣x2+2x+3。
又∵y=-x2+2x+3=-(x-1)2+4,∴点B(1,4)。
(2)证明:如图1,过点B作BM⊥y于点M,则M(0,4).
在Rt△AOE中,OA=OE=3,
∴∠1=∠2=45°, 。
在Rt△EMB中,EM=OM﹣OE=1=BM,
∴∠MEB=∠MBE=45°, 。
∴∠BEA=180°﹣∠1﹣∠MEB=90°。
∴AB是△ABE外接圆的直径。
在Rt△ABE中, ,∴∠BAE=∠CBE。
在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°。∴∠CBA=90°,即CB⊥AB。
∴CB是△ABE外接圆的切线。
(3)存在。点P的坐标为(0,0)或(9,0)或(0,﹣ )。
(4)设直线AB的解析式为y=kx+b.
将A(3,0),B(1,4)代入,得 ,解得 。
∴直线AB的解析式为y=﹣2x+6。
过点E作射线EF∥x轴交AB于点F,当y=3时,得x= ,∴F( ,3)。
情况一:如图2,当0
则ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L.
由△AHD∽△FHM,得 ,即 ,解得HK=2t。
∴
= ×3×3﹣ (3﹣t)2﹣ t•2t=﹣ t2+3t。
情况二:如图3,当
由△IQA∽△IPF,得 .即 ,
解得IQ=2(3﹣t)。
∴
= ×(3﹣t)×2(3﹣t)﹣ (3﹣t)2= (3﹣t)2= t2﹣3t+ 。
综上所述: 。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数性质,等腰直角三角形的判定和性质,勾股定理,锐角三角函数定义,圆的切线的判定,相似三角形的性质,平移的性质。
【分析】(1)已知A、D、E三点的坐标,利用待定系数法可确定抛物线的解析式,从而能得到顶点B的坐标。
(2)过B作BM⊥y轴于M,由A、B、E三点坐标,可判断出△BME、△AOE都为等腰直角三角形,易证得∠BEA=90°,即△ABE是直角三角形,而AB是△ABE外接圆的直径,因此只需证明AB与CB垂直即可.BE、AE长易得,能求出tan∠BAE的值,结合tan∠CBE的值,可得到∠CBE=∠BAE,由此证得∠CBA=∠CBE+∠ABE=∠BAE+∠ABE=90°,从而得证。
(3)在Rt△ABE中,∠AEB=90°,tan∠BAE= ,sin∠BAE= ,cos∠BAE= 。
若以D、E、P为顶点的三角形与△ABE相似,则△DEP必为直角三角形。
①DE为斜边时,P1在x轴上,此时P1与O重合。
由D(﹣1,0)、E(0,3),得OD=1、OE=3,
即tan∠DEO= =tan∠BAE,
即∠DEO=∠BAE,满足△DEO∽△BAE的条件。
因此 O点是符合条件的P1点,坐标为(0,0)。
②DE为短直角边时,P2在x轴上。
若以D、E、P为顶点的三角形与△ABE相似∠DEP2=∠AEB=90°sin∠DP2E=sin∠BAE= 。
而DE= ,则DP2=DE÷sin∠DP2E= ÷ =10,OP2=DP2﹣OD=9。
即P2(9,0)。
③DE为长直角边时,点P3在y轴上。
若以D、E、P为顶点的三角形与△ABE相似,
则∠EDP3=∠AEB=90°cos∠DEP3=cos∠BAE= 。
则EP3=DE÷cos∠DEP3= ÷ ,OP3=EP3﹣OE= 。即P3(0,﹣ )。
综上所述,得:P1(0,0),P2(9,0),P3(0,﹣ )。
(4)过E作EF∥x轴交AB于F,当E点运动在EF之间时,△AOE与△ABE重叠部分是个五边形;当E点运动到F点右侧时,△AOE与△ABE重叠部分是个三角形.按上述两种情况按图形之间的和差关系进行求解。
9. (2012湖北黄冈8分)如图,在△ABC 中,BA=BC,以AB 为直径作半圆⊙O,交AC 于点D.连结DB,
过点D 作DE⊥BC,垂足为点E.
(1)求证:DE 为⊙O 的切线;
(2)求证:DB2=AB•BE.
【答案】证明:(1)连接OD、BD,则∠ADB=90°(圆周角定理),
∵BA=BC,∴CD=AD(三线合一)。
又∵AO=BO,∴OD是△ABC的中位线。
∴OD∥BC。
∵∠DEB=90°,∴∠ODE=90°,即OD⊥DE。
∴DE为⊙O的切线。
(2)∵∠BED=∠BDC =900,∠EBD=∠DBC,
∴△BED∽△BDC,∴ 。
又∵AB=BC,∴ 。∴BD2=AB•BE。
【考点】切线的判定和性质,圆周角定理,等腰三角形的性质,三角形中位线的性质,相似三角形的判定和性质。
【分析】(1)连接OD、BD,根据圆周角定理可得∠ADB=90°,从而得出点D是AC中点,判断出OD是△ABC的中位线,利用中位线的性质得出∠ODE=90°,这样可判断出结论。
(2)根据题意可判断△BED∽△BDC,从而可得BD2=BC•BE,将BC替换成AB即可得出结论。
10. (2012湖北十堰10分)如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.
(1)求证:BD是⊙O的切线;
(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;
(3)作CF⊥AB于点F,连接AD交CF于点G(如图2),求 的值.
【考点】圆的综合题,圆周角定理,直角三角形两锐角的关系,切线的判定,直角三角形斜边上的中线性质,等边三角形的判定和性质,平行的判定和性质,菱形的判定,相似三角形的判定和性质。
【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角为直角得到∠BCA=90°,则∠ABC+∠BAC=90°,
而∠CBD=∠BA,得到∠ABC+∠CBD=90°,即OB⊥BD,根据切线的判定定理即可得到BD为⊙O的切
线。
(2)连接CE、OC,BE,根据直角三角形斜边上的中线等于斜边的一半得到BE=OE=ED,则△OBE为等边三角形,于是∠BOE=60°,又因为AC∥OD,则∠OAC=60°,AC=OA=OE,即有AC∥OE且AC=OE,可得到四边形OACE是平行四边形,加上OA=OE,即可得到四边形OACE是菱形。
(3)由CF⊥AB得到∠AFC=∠OBD=90°,而OD∥AC,则∠CAF=∠DOB,根据相似三角形的
判定易得Rt△AFC∽Rt△OBD,则有 ,即 ,再由FG∥BD易证得△AFG∽△ABD,则 ,即 ,然后求FG与FC的比即可。
11. (2012湖北孝感10分))如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、
BN于点D、C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.
【答案】解:(1)证明:过O点作OE⊥CD于点E,
∵AM切⊙O于点A,∴OA⊥AD。
又∵DO平分∠ADC,∴OE=OA。
∵OA为⊙O的半径,∴OE为⊙O的半径。
∴CD是⊙O的切线。
(2)过点D作DF⊥BC于点F,
∵AM,BN分别切⊙O于点A,B,
∴AB⊥AD,AB⊥BC。
∴四边形ABFD是矩形。∴AD=BF,AB=DF。
又∵AD=4,BC=9,∴FC=9-4=5。
∵AM,BN,DC分别切⊙O于点A,B,E,
∴DA=DE,CB=CE。∴DC=AD+BC=4+9=13。
在Rt△DFC中,DC2=DF2+FC2,∴ 。
∴AB=12。∴⊙O的半径R是6。
【考点】切线的判定和性质,角平分线的性质,勾股定理,矩形的判定和性质。
【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论。
(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,从而可得出半径。
12. (2012湖北襄阳10分)如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.
【答案】解:(1)连接OB,
∵PB是⊙O的切线,∴∠PBO=90°。
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB。
又∵PO=PO,∴△PAO≌△PBO(SAS)。
∴∠PAO=∠PBO=90°。∴直线PA为⊙O的切线。
(2)EF2=4OD•OP。证明如下:
∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°。
∴∠OAD=∠OPA。∴△OAD∽△OPA,∴ ,即OA2=OD•OP。
又∵EF=2OA,∴EF2=4OD•OP。
(3)∵OA=OC,AD=BD,BC=6,∴OD= BC=3(三角形中位线定理)。
设AD=x,
∵tan∠F= ,∴FD=2x,OA=OF=2x﹣3。
在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32,
解得,x1=4,x2=0(不合题意,舍去)。∴AD=4,OA=2x﹣3=5。
∵AC是⊙O直径,∴∠ABC=90°。
又∵AC=2OA=10,BC=6,∴cos∠ACB= 。
∵OA2=OD•OP,∴3(PE+5)=25。∴PE= 。
【考点】切线的判定和性质,垂径定理,全等三角形的判定和性质,直角三角形两锐角的关系,相似三角
形的判定和性质,三角形中位线定理,勾股定理,圆周角定理,锐角三角函数定义,特殊角的三角函数值。1028458【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,从而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论。
(2)先证明△OAD∽△OPA,由相似三角形的性质得出OA与OD、OP的关系,然后将EF=2OA代入关系式即可。
(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,由勾股定理解出x的值,从而能求出cos∠ACB,再由(2)可得OA2=OD•OP,代入数据即可得出PE的长。
13. (2012湖北鄂州10分)如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长
为直径作圆,交BC于E,过E作EH⊥AB于H。
(1)求证:OE∥AB;
(2)若EH= CD,求证:AB是⊙O的切线;
(3)若BE=4BH,求 的值。
【答案】解:(1)证明:在等腰梯形ABCD中,AB=DC,∴∠B=∠C。
∵OE=OC,∴∠OEC=∠C,∴∠B=∠OEC。∴OE∥AB。
(2)证明:过点O作OF⊥AB于点F,过点O作OG∥BC交AB于点G。
∵AB=DC,∴∠B=∠C。
∴OC=OE,∴∠OEC=∠C。∴∠OEC=∠B。∴OE∥GB。
又∵EH⊥AB,∴FO∥HE。∴四边形OEHF是平行四边形。∴OF=EH。
又∵EH= CD,∴OF= CD,即OF是⊙O的半径。
∴AB是⊙O的切线。
(3)连接DE。
∵CD是直径,∴∠DEC=90°。∴∠DEC=∠EHB。
又∵∠B=∠C,∴△EHB∽△DEC。∴ 。
∵BE=4BH,设BH=k,则BE=4k,
,
∴CD=2EH=2 。∴ 。
【考点】等腰梯形(三角形)的性质,平行线的判定和性质,平行四边形的判定和性质,切线的判定,相似三角形的判定和性质,勾股定理。
【分析】(1)判断出∠B=∠OEC,根据同位角相等得出OE∥AB。
(2)过点O作OF⊥AB于点F,过点O作OG∥BC交AB于点G,证明OF是⊙O的半径即可。
(3)求出△EHB∽△DEC,根据相似三角形的性质和勾股定理解答。
2012中考科目:
【中考语文】【中考数学】【中考英语】【中考物理】【中考化学】
【中考政治】【中考历史】【中考生物】【中考地理】 【中考体育】
2012中考考前:
【中考动态】【中考心理辅导】 【中考家长】【中考饮食】 【中考政策】
2012中考考后:
标签:中考数学模拟题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。