2012中考数学压轴题及答案40例(8)

编辑:sx_gaomj

2012-05-16


威廉希尔app 中考频道提供大量中考资料,在第一时间更新中考资讯。以下是2012中考数学压轴题及答案40例:

32.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA

(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.

(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.

①当△BDE是等腰三角形时,直接写出此时点E的坐标.

②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

解:(1)由题意知Rt△△AOC∽Rt△COB,∴ = .

∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).

∴OA 2-5OA+4=0,∵OA

∴A(-1,0),B(4,0),C(0,2).

∴可设所求抛物线的关系式为y=a(x+1)(x-4).······················· 3分

将点C(0,2)代入,得2=a(0+1)(0-4),∴a=- .

∴经过点A、B、C的抛物线的关系式为y=- (x+1)(x-4).·· 4分

即y=- x 2+ x+2.

(2)①E1(3, ),E2( , ),E3( , ).······················· 7分

关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):

设直线BC的解析式为y=kx+b.

则 解得 ∴直线BC的解析式为y=- x+2.

∵点E在直线BC上,∴E(x,- x+2).

若ED=EB,过点E作EH⊥x轴于H,如图2,则DH= DB=1.

∴OH=OD+DH=2+1=3.

∴点E的横坐标为3,代入直线BC的解析式,得y=- ×3+2= .

∴E1(3, ).

若DE=DB,则(x-2)2+(- x+2)2=22.

整理得5x 2-24x+16=0,解得x1=4(舍去),x2= .

∴y=- × +2= ,∴E2( , ).

若BE=BD,则(x-4)2+(- x+2)2=22.

整理得5x 2-24x+16=0,解得x1= (此时点P在第四象限,舍去),x2= .

∴y=- ×( )+2= ,∴E3( , ).

②△CDP有最大面积.······································································ 8分

过点D作x轴的垂线,交PC于点M,如图3.

设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,

得 解得 ∴直线PC的解析式为y= x+2,∴M(2, +2).

S△CDP=S△CDM+S△PDM= xP·yM

= m( +2)

=m+n-2

=m+(- m2+ m+2)-2

=- m2+ m

=- (m- )2+ ∴当m= 时,△CDP有最大面积,最大面积为 .···················· 9分

此时n=- ×( )2+ × +2= ∴此时点P的坐标为( , ).··················································· 10分

33.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).

(1)求抛物线的对称轴及点A的坐标;

(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;

(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

解:(1)对称轴为直线x=- =-2,即x=-2;··············································· 2分

令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.

∵点B的坐标为(-1,0),∴点A的坐标为(-3,0).·········································· 4分

(2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3).································ 7分

(3)存在.················································································································ 8分

当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3).

AO=3,EO=2,AE=1,CO=3.

∵DE∥CO,

∴△AED∽△AOC.∴ = ,即 = .

∴DE=1.··················································································································· 9分

∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.

S梯形DEOC= (1+3)×2=4.

设直线CM交x轴于点F,如图.

若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2

即 CO·FO=2.∴ ×3FO=2,∴FO= .

∴点F的坐标为(- ,0).···················································· 10分

∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.

把F(- ,0)代入,得- k+3=0.··································································· 11分

∴k= .

∴直线CM的解析式为y= x+3.········································································· 12分

34.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示;抛物线y=ax 2+ax-2经过点B.

(1)求点B的坐标;

(2)求抛物线的解析式;

(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

解:(1)过点B作BD⊥x轴于D.

∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°.

∴∠BCD=∠CAO.····································································································· 1分

又∵∠BDC=∠COA=90°,BC=CA.

∴Rt△BCD≌Rt△CAO,······························································································ 2分

∴BD=CO=1,CD=AO=2.····················································································· 3分

∴点B的坐标为(-3,1);······················································································· 4分

(2)把B(-3,1)代入y=ax 2+ax-2,得1=9a-3a-2,解得a= .············ 6分

∴抛物线的解析式为y= x 2+ x-2;··································································· 7分

(3)存在.················································································································ 8分

①延长BC至点P1,使CP1=BC,则得到以点C为直角顶点的等腰直角三角形△ACP1.

····································································································································· 9分

过点P1作P1M⊥x轴.

∵CP1=BC,∠P1CM=∠BCD,∠P1MC=∠BDC=90°.

∴Rt△P1CM≌Rt△BCD,········································································ 10分

∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);······················· 11分

把x=1代入y= x 2+ x-2,得y=-1.

∴点P1(1,-1)在抛物线上.······························································· 12分

②过点A作AP2⊥AC,且使AP2=AC,则得到以点A为直角顶点的等腰直角三角形△ACP2.

··········································································································· 13分

过点P2作P2N⊥y轴,同理可证Rt△P2NA≌Rt△AOC.·········································· 14分

P2N=AO=2,AN=CO=1.可求得点P2(2,1).·················································· 15分

把x=2代入y= x 2+ x-2,得y=1.

∴点P2(2,1)在抛物线上.····················································································· 16分

综上所述,在抛物线上还存在点P1(1,-1)和P2(2,1),使△ACP仍然是以AC为直角边的等腰直角三角形.

35.如图,在平面直角坐标中,二次函数图象的顶点坐标为C(4,- ),且在x轴上截得的线段AB的长为6.

(1)求二次函数的解析式;

(2)点P在y轴上,且使得△PAC的周长最小,求:

①点P的坐标;

②△PAC的周长和面积;

(3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

解:(1)设二次函数的解析式为y=a(x -4)2- (a≠0),且A(x1,0),B(x2,0).

∵y=a(x -4)2- =ax 2-8ax+16a- ∴x1+x2=8,x1x2=16- .

∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16- )=36,∴a= .

∴二次函数的解析式为y= (x -4)2- .······················································· 2分

(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求.

令y=0,得 (x -4)2- =0,解得x1=1,x2=7.

∴A(1,0),B(7,0).∴OA=1,∴OA′=1.

设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC= .

∵△A′OP∽△ADC,∴ = ,即 = ,∴OP= .

∴P(0,- ).········································································································ 4分

②∵A′C= = = AC= = = ∴△PAC的周长=PA+PC+AC=A′C+AC= + .····································· 5分

S△PAC=S△A′AC - S△A′AP= A′A(DC-OP)= ×2×( - )= .

························································································· 7分

(3)存在.················································································································ 8分

∵tan∠BAC= = ,∴∠BAC=30°.

同理,∠ABC=30°,∴∠ACB=120°,AC=BC.

①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°.

如图2,过点Q1作Q1H⊥x轴于H,则

Q1H=AQ1·sin60°=6× = ,HA=AQ1·cos60°=6× =3.

HO=HA-OA=3-1=2.

∴点Q1的坐标为(-2, ).

把x=-2代入y= (x -4)2- ,得y= (-2-4)2- = .

∴点Q1在抛物线上.·································································································· 9分

②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10, ).

同样,点Q2也在抛物线上.····················································································· 10分

③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.

····························································································· 11分

综上所述,在x轴上方的抛物线上存在点Q1(-2, )和Q2(10, ),使得以Q、A、B三点为顶点的三角形与△ABC相似.············································································································· 12分

36.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0, ).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC.

(1)求实数a,b,c的值;

(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;

y

O

x

C

N

B

P

M

A

(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

解:(1)由题意得

解得a=- ,b=- ,c= .

······················································ 3分

(2)由(1)知y=- x 2- x+ ,令y=0,得- x 2- x+ =0.

解得x1=-3,x2=1.

∵A(-3,0),∴B(1,0).

又∵C(0, ),∴OA=3,OB=1,OC= ,∴AB=4,BC=2.

∴tan∠ACO= = ,∴∠ACO=60°,∴∠CAO=30°.

同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°.

∴△ABC是直角三角形.

又∵BM=BN=t,∴△BMN是等边三角形.

∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°.

∴Rt△PNC∽Rt△ABC,∴ = .

由题意知PN=BN=t,NC=BC-BN=2-t,∴ = .

∴t= .······················································· 4分

∴OM=BM-OB= -1= .

如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°= × = .

MH=PM·cos60°= × = .

∴OH=OM+MH= + =1.

∴点P的坐标为(-1, ).·························································· 6分

(3)存在.

由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也是直角三角形.

∵二次函数y=- x 2- x+ 的图象的对称轴为x=-1.

∴点P在对称轴上.

∵PN∥x轴,∴PN⊥对称轴.

又∵QN≥PN,PN=BN,∴QN≥BN.

∴△BNQ不存在以点Q为直角顶点的情形.

①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,且QN>PN,∠MNQ=30°.

∴∠PNQ=30°,∴QN= = = .

∴ = = .

∵ =tan60°= ,∴ ≠ .

∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似.··········· 7分

②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°.

∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°.

∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM.

∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°.

∵∠BNM=60°,∴∠QBN=90°.

∵∠CAO=30°,∠ACB=90°.

∴△BNQ∽△ABC.················································ 8分

∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC.

设对称轴与x轴的交点为D.

∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP.

∴DQ=PD,∴点Q与点P关于x轴对称.

∴点Q的坐标为(-1,- ).··············································································· 9分

综合①②得,在抛物线的对称轴上存在点Q(-1,- ),使得以B,N,Q为顶点的三角形与△ABC相似. 10分

37.如图①,已知抛物线y=ax 2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.

(1)求抛物线的解析式;

(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;

(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

解:(1)由题意得 .········································································ 1分

解得 .··················································································· 2分

∴所求抛物线的解析式为y=-x 2-2x+3;··································· 3分

(2)存在符合条件的点P,其坐标为P(-1, )或P(-1, )

或P(-1,6)或P(-1, );··························································· 7分

(3)解法一:

过点E作EF⊥x轴于点F,设E(m,-m 2-2m+3)(-3< a <0)

则EF=-m 2-2m+3,BF=m+3,OF=-m.········· 8分

∴S四边形BOCE =S△BEF +S梯形FOCE

= BF·EF + (EF+OC)·OF

= (m+3)(-m 2-2m+3)+ (-m 2-2m+6)(-m).···································· 9分

=- m 2- m+ ································································································· 10分

=- (m+ )2+ ∴当m=- 时,S四边形BOCE 最大,且最大值为 .·············································· 11分

此时y=-(- )2-2×(- )+3= ∴此时E点的坐标为(- , ).··········································································· 12分

解法二:过点E作EF⊥x轴于点F,设E(x,y)(-3< x <0)····························· 8分

则S四边形BOCE =S△BEF +S梯形FOCE

= BF·EF + (EF+OC)·OF

= (3+x)· y+ (3+y)(-x).·························································· 9分

= (y-x)= (-x 2-3x+3).······················································ 10分

=- (x+ )2+ ∴当x=- 时,S四边形BOCE 最大,且最大值为 .··············································· 11分

此时y=-(- )2-2×(- )+3= ∴此时E点的坐标为(- , ).··········································································· 12分

38.如图,已知抛物线y=ax 2+bx+c与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA

(1)求A、B、C三点的坐标;

(2)求此抛物线的解析式;

(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

解:(1)∵OA、OC的长是方程x 2-5x+4=0的两个根,OA

∴OA=1,OC=4.

∵点A在x轴的负半轴,点C在y轴的负半轴

∴A(-1,0),C(0,-4).

∵抛物线y=ax 2+bx+c的对称轴为x=1

∴由对称性可得B点坐标为(3,0).

∴A、B、C三点的坐标分别是:A(-1,0),B(3,0),C(0,-4).

············································································································· 3分

(2)∵点C(0,-4)在抛物线y=ax 2+bx+c图象上,∴c=-4.···················· 4分

将A(-1,0),B(3,0)代入y=ax 2+bx-4得

解得 ·············································································· 6分

∴此抛物线的解析式为y= x 2- x-4.······························································· 7分

(3)∵BD=m,∴AD=4-m.

在Rt△BOC中,BC 2=OB 2+OC 2=3 2+4 2=25,∴BC=5.

∵DE∥BC,∴△ADE∽△ABC.

∴ = ,即 = .

∴DE= .

过点E作EF⊥AB于点F,则sin∠EDF=sin∠CBA= = .

∴ = ,∴EF= DE= × =4-m.·················································· 9分

∴S =S△CDE =S△ADC -S△ADE

= (4-m)×4- (4-m)(4-m)

=- m 2+2m

=- (m-2)2+2(0

∵- <0

∴当m=2时,S有最大值2.··············································· 11分

此时OD=OB-BD=3-2=1.

∴此时D点坐标为(1,0).·················································································· 12分

39.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).

(1)求a的值及直线AC的函数关系式;

(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.

①求线段PM长度的最大值;

②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.

解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2.······································· 1分

∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6

令-2(x+3)(x-1)=0,得x1=-3,x2=1

∵点A在点B右侧,∴A(1,0),B(-3,0)

设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得

解得 ∴直线AC的函数关系式为y=-2x+2.··········································· 3分

(2)①设P点的横坐标为m(-2≤ m ≤1),

则P(m,-2m+2),M(m,-2m 2-4m+6).··································· 4分

∴PM=-2m 2-4m+6-(-2m+2)

=-2m 2-2m+4

=-2(m+ )2+ ∴当m=- 时,线段PM长度的最大值为 .································ 6分

②存在

M1(0,6).················································································································· 7分

M2(- , ).·········································································································· 9分

点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考)

ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△ANP

∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6

得-2x 2-4x+6=6,∴x=-2(舍去)或x=0

∴M1(0,6)

(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴

重合,点N与原点O重合)

ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1)

过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D

则△CMP∽△NAP

又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD

∴ = ∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m

在y=-2x+2中,令x=0,得y=2

∴D(0,2),∴OD=2

∴ = 整理得4m 2+9m+2=0,解得m=-2(舍去)或m=- 当m=- 时,-2m 2-4m+6=(- )2-4×(- )+6= ∴M2(- , )

如图,二次函数的图象经过点D(0, ),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.

(1)求该二次函数的解析式;

(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;

(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

解:(1)设该二次函数的解析式为y=a(x-h)2+k

∵顶点C的横坐标为4,且过点D(0, )

∴ =16a+k ①

又∵对称轴为直线x=4,图象在x轴上截得的线段AB的长为6

∴A(1,0),B(7,0)

∴0=9a+k ②

由①②解得a= ,k= ∴该二次函数的解析式为y= (x-4)2 (2)∵点A、B关于直线x=4对称,∴PA=PB

∴PA+PD=PB+PD≥DB

∴当点P在线段DB上时,PA+PD取得最小值

∴DB与对称轴的交点即为所求的点P,如图1

设直线x=4与x轴交于点M

∵PM∥OD,∴∠BPM=∠BDO

又∠PBM=∠DBO,∴△BPM∽△BDO

∴ = ,即 = ,∴PM= ’

∴点P的坐标为(4, )

(3)由(1)知点C(4, ),

又∵AM=3,∴在Rt△ACM中,tan∠ACM= ,∴∠ACM=60°

∵AC=BC,∴∠ACB=120°

①如图2,当点Q在x轴上方时,过Q作QN⊥x轴于N

如果AB=BQ,由△ABC∽△ABQ,得BQ=6,∠ABQ=120°

∴∠QBN=60°

∴QN= ,BN=3,ON=10

∴此时点Q的坐标为(10, )

∵ (10-4)2 = ,∴点Q在抛物线上

如果AB=AQ,由对称性知Q(-2, ),且也在抛物线上

②当点Q在x轴下方时,△QAB就是△ACB

∴此时点Q的坐标为(4, )

综上所述,在抛物线上存在点Q,使△QAB与△ABC相似

点Q的坐标为(10, )或(-2, )或(4, ).

41.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;

(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

解:(1)∵对称轴x=- =- .······································································ 1分

又∵OC=3OB=3,a>0

∴C(0,-3).······················································································ 2分

方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:

解得

∴抛物线的解析式为y= x 2+ x-3.··································································· 4分

方法二:令ax 2+3ax+c=0,则xA+xB=-3

∵B(1,0),∴xA+1=-3,∴xA=-4

∴A(-4,0)

∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入

得-3=a(0+4)(0-1),∴a= ∴抛物线的解析式为y= (x+4)(x-1)

即y= x 2+ x-3.·········································································· 4分

(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M

∵S四边形ABCD =S△ABC +S△ACD

= AB·OC+ DM·(AN+ON)

= (4+1)×3+ DM·4

= +2DM.······················································································ 5分

设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入

得 解得

∴直线AC的解析式为y=- x-3.················································· 6分

设D(x, x 2+ x-3),则M(x,- x-3)

∴DM=- x-3-( x 2+ x-3)=- (x+2)2+3.········································· 7分

当x=-2时,DM有最大值3

此时四边形ABCD面积有最大值,最大值为: +2×3= .····························· 8分

方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1

设D(x, x 2+ x-3),则DQ=-x,OQ=- x 2- x+3

从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值

则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ

= OB·OC+ (AO+DQ)·OQ- DQ·CQ

= ×1×3+ (4+DQ)·OQ- DQ·(OQ-3)

= +2OQ+ DQ.······················································ 5分

= -2( x 2+ x-3)- x

=- x 2-6x+ =- (x+2)2+ .··················································· 7分

当x=-2时,四边形ABCD面积有最大值 ···························································································· 8分

(3)如图3

①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形ACP1E1为平行四边形. 9分

∵C(0,-3),令 x 2+ x-3=-3

解得x1=0,x2=3,∴CP1=3

∴P1(-3,-3).······································································································ 11分

②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形. 12分

∵C(0,-3),∴设P(x,3)

由 x 2+ x-3=3,解得x= 或x= ∴P2( ,3),P3( ,3).································································ 14分

综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别为:

P1(-3,-3),P2( ,3),P3( ,3)

42.如图,在平面直角坐标系xOy中,抛物线y=- x 2+bx+c与x轴交于A(1,0)、B(5,0)两点.

(1)求抛物线的解析式和顶点C的坐标;

(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).

①当α等于多少度时,△CPQ是等腰三角形?

②设BP=t,AQ=s,求s与t之间的函数关系式.

解:(1)根据题意,得..······················································· 1分

解得..·············································································· 2分

∴抛物线的解析式为y=- x 2+3x- .······································· 3分

即y=- (x-3)2+2.

∴顶点C的坐标为(3,2)..··················· 4分

(2)①∵CD=DB=AD=2,CD⊥AB,

∴∠DCB=∠CBD=45°.······························ 5分

ⅰ)若CQ=CP,则∠PCD= ∠PCQ=22.5°.

∴当α=22.5°时,△CPQ是等腰三角形.········································ 6分

ⅱ)若CQ=PQ,则∠CPQ=∠PCQ=45°,

此时点Q与D重合,点P与A重合.

∴当α=45°时,△CPQ是等腰三角形.············································ 7分

ⅲ)若PC=PQ,则∠PCQ=∠PQC=45°,此时点Q与B重合,点P与D重合.

∴α=0°,不合题意.································································································ 8分

∴当α=22.5°或45°时,△CPQ是等腰三角形.······················································ 9分

②连接AC,∵AD=CD=2,CD⊥AB,

∴∠ACD=∠CAD=45°,AC=BC= = .············································ 10分

ⅰ)当0°<α≤45°时,

∵∠ACQ=∠ACP+∠PCQ=∠ACP+45°.

∠BPC=∠ACP+∠CAD=∠ACP+45°.

∴∠ACQ=∠BPC.··································································································· 11分

又∵∠CAQ=∠PBC=45°,∴△ACQ∽△BPC.

∴ = .

∴AQ·BP=AC·BC= × =8.·································································· 12分

ⅱ)当45°<α<90°时,同理可得AQ·BP=AC·BC=8.··································· 13分

∴s= .··················································································································· 14分

相关链接:

2012年上海静安区中考二模数学试题

2012年上海普陀区中考二模数学试题

2012中考数学最新模拟题(一)


免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。