2013年中考大连数学考试说明及解读

编辑:

2013-04-27

三是能够自主地从事一些数学探究活动,并能够在活动中有效地表达自己的思维过程,理解他人的观点;

四是能够形成一些基本的思维方式,达到一定的抽象思维水平等。

(二)具体考查内容与要求

具体的考查内容主要包括以下几个方面:基础知识与基本技能,数学活动过程,数学思考,问题解决能力等。

针对具体考查内容的要求如下:

1.基础知识与基本技能

(1)数与代数

●数与式

了解有理数、无理数、实数的概念,会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数。理解相反数和绝对值的概念及意义。了解乘方与开方的概念,并理解这两种运算之间的关系。了解平方根、算术平方根、立方根、二次根式的概念,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根。了解整数指数幂的意义和基本性质。掌握实数的加、减、乘、除、乘方及其混合运算的基本过程,善于运用运算律简化运算。具有良好的数感,了解近似数和有效数字的概念,能对含有较大数字的信息做出合理的解释和推断,能用有理数估计一个无理数的大致范围。

理解用字母表示数的意义,能解释简单代数式的实际背景或几何意义,会用代数式表示简单问题的数量关系。通过考虑提供的资料,能找到特定问题所需的公式,并会代入具体数值计算相应代数式的值。了解整式与分式的概念,并会进行简单的整式加、减、乘运算及分式加、减、乘、除运算(包括约分和通分)。了解整式乘法公式及其几何背景,能利用它们简化运算。因式分解式子的指数必须是正整数,且只要求能够利用提公因式法和公式法进行因式分解,其他方法不作为必考内容。

●方程与不等式

通过分析具体问题中的数量关系,能够列出方程或方程组并会求解,有意识地根据所得解在现实世界的实际意义检验结果是否合理,从而建立有效的数学模型。会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个),会用因式分解法、公式法和配方法解数字系数的一元二次方程,能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。通过分析具体问题中的数量关系,能够列出一元一次不等式或不等式组,并能在数轴上表示不等式的解集或利用数轴确定不等式组的解集。在了解不等式意义的基础上理解不等式的基本性质。

●函数

了解函数的概念和表示方法,能用适当的函数表示法刻画某些实际问题中变量之间的关系。能根据函数解析式以及函数自变量的现实意义确定自变量的取值范围,并会求出具体的函数值。能够借助一次函数、二次函数解析式讨论相应函数的基本性质;在给定函数图象的情境中,能结合图象本身进行相应的函数关系分析,在此基础上对变量的变化规律进行初步预测。在具体情境中能根据已知条件确定一次函数、反比例函数和二次函数的表达式,并从图象的变化上认识不同函数的性质。会根据公式确定二次函数的顶点、开口方向和对称轴(公式不要求记忆和推导)。会利用一次函数图象求一元一次方程、二元一次方程组的解,会利用二次函数图象估计一元二次方程解的大致范围。能利用三种函数表述方式表示实际问题的数学信息,并探索问题中存在的数量关系及变化规律。

(2)空间与图形

●图形的认识

能估计并会比较角的大小,会进行度、分、秒之间的简单换算。了解角的平分线、线段垂直平分线及其性质,能找出特定角的补角、余角和对顶角,理解等角的余角和补角相等,理解对顶角相等。在了解垂线段最短的性质基础上,理解两点间距离、点到直线的距离、两条平行线间距离等概念之间的联系。能够选择恰当的工具画一条直线的垂线、平行线;知道过定点只能画一条直线垂直于(平行于)给定直线。掌握两条直线平行与垂直的概念,并能够运用平行线的性质解决几何问题。会画出任意三角形的角平分线、中线、高、内心和外心。了解三角形中位线及其性质。掌握两个三角形全等的条件。理解等腰三角形、直角三角形的概念及其性质。会运用勾股定理及其逆定理解决问题。了解正三角形、正多边形的概念。了解多边形内角和与外角和公式及其由来。掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系。了解线段、三角形、平行四边形、矩形的重心及物理意义。能用三角形、四边形或正六边形进行简单的镶嵌设计,并理解图形镶嵌(密铺)的原理。理解圆及其性质,了解弧、弦、圆心角、圆周角的关系,会计算弧长及扇形面积;了解点与圆、直线与圆、圆与圆的位置关系;知道直径所对圆周角为直角。了解切线的概念,知道切线与过切点的半径互相垂直,能判定直线与圆是否相切,会过圆上一点画圆的切线。能够完成以下基本作图(对于尺规作图题,会写已知、求作和作法即可,不要求证明):作一条线段等于已知线段;作一个角等于已知角;作某个已知角的平分线;作某条已知线段的垂直平分线;已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形;过不在同一直线上的三点作圆。

正确认识基本几何体:直棱柱、圆柱、圆锥、球。既能够根据基本几何体(包括实物原型)判断和绘制主视图、左视图、俯视图,也能够根据主视图、左视图、俯视图描述基本几何体。既了解直棱柱、圆锥、圆柱的展开图,会计算它们的侧面积和全面积,又能够根据展开图判断和制作相应的立体模型。了解几何体、三视图、展开图之间的关系,并能够将这种关系应用到现实生活中。能够绘制简单的平面图和立体图,比较清晰地反映视点、视角和盲区。了解生活中中心投影和平行投影的实例,能对两者进行区分。

●图形与变换

了解现实生活中的镜面对称现象,能找出常见的轴对称图形并指出对称轴,掌握轴对称图形具有的基本性质,并利用轴对称性进行图案设计。能够按要求作出简单平面图形经过一次或两次轴对称后的图形。知道等腰三角形、矩形、菱形、等腰梯形、正多边形、圆的轴对称性及其相关性质。

了解现实生活中的平移现象和实例,理解平移的基本性质:对应点连线平行且相等。能按照要求作出简单平面图形平移后的图形,并利用平移进行图案设计。

标签:中考说明

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。