编辑:
2013-12-30
20.某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查。整理调查结果,绘制出不完整的条形统计图(如图8)。根据图中的信息,解答下列问题:
(1)在被调查的工人中,日加工9个零件的人数为_____名;
投篮次数(n) 50 100 150 200 250 300 500
投中次数(m) 28 60 78 104 123 152 251
投中频率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.50
主观图(1)
图表1
(2)在被调查的工人中,日加工12个零件的人数为____名,日加工____个零件的人数最多,日加工15个零件的人数占被调查人数的____%;
(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数。
四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)
21.如图9,一次函数y=kx+b的图象与反比例函数y=m/x的图象都经过点A(-2,6)和点B(4,n).
(1)求这两个函数的解析式;
(2)直接写出不等式kx+b≤m/x的解集。
22. 甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相 遇后乙又继续以原来的速度跑向体育馆。图10是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象。
(1)在跑步的全过程中,甲共跑了___米,甲的速度为___米/秒;
(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?
(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?
23.如图11,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F。
(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长。
五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)
24. 如图12,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点 B时,点P、Q同时停止运动。过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R。设点Q的运动时间 为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2)。
(1)t为何值时,点Q'恰好落在AB上? (2)求S与t的函数关系式,并写出t的取值范围;
(3)S能否为9/8cm2?若能,求出此时的t值,若不能,说明理由。
25.如图13,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2a,点E在AD上,点F在DC上,且∠BEF=∠A.
(1)∠BEF=_____(用含a的代数式表示);
(2)当AB=AD时,猜想线段ED、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图14),求EB/EF的值(用含m、n的代数式表示)。
26.如图15,抛物线y=ax2+bx+c经过A(-■,0)、B(3■,0)、C(0,3)三点,线段BC与抛物线的对称轴l相交于点D。设抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E。
(1)求该抛物线的解析式;
(2)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标,若不存在,说明理由;
(3)将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴l相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果)。
总结:2012大连初中升学考试数学试题就介绍到这里了,希望能帮助同学们更好的复习本门课程,更多精彩学习内容请继续关注威廉希尔app !
相关推荐:
标签:大连中考试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。