2015年太原中考数学试题—图表信息题

编辑:

2015-05-11

12. ( 2014•珠海,第20题9分)阅读下列材料:

解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:

解∵x﹣y=2,∴x=y+2

又∵x>1,∵y+2>1.∴y>﹣1.

又∵y<0,∴﹣1

同理得:1

由①+②得﹣1+1

∴x+y的取值范围是0

请按照上述方法,完成下列问题:

(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 1

(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).

考点: 一元一次不等式组的应用.

专题: 阅读型.

分析: (1)根据阅读材料所给的解题过程,直接套用解答即可;

(2)理解解题过程,按照解题思路求解.

解答: 解:(1)∵x﹣y=3,

∴x=y+3,

又∵x>2,

∴y+3>2,

∴y>﹣1.

又∵y<1,

∴﹣1

同理得:2

由①+②得﹣1+2

∴x+y的取值范围是1

(2)∵x﹣y=a,

∴x=y+a,

又∵x<﹣1,

∴y+a<﹣1,

∴y<﹣a﹣1,

又∵y>1,

∴1

同理得:a+1

由①+②得1+a+1

∴x+y的取值范围是a+2

点评: 本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.

13.(2014•四川自贡,第23题12分)阅读理解:

如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:

(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;

(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

考点: 相似形综合题

分析: (1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.

(2)以CD为直径画弧,取该弧与AB的一个交点即为所求;

(3)因为点E是矩形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.

解答: 解:(1)∵∠A=∠B=∠DEC=45°,

∴∠AED+∠ADE=135°,∠AED+∠CEB=135°

∴∠ADE=∠CEB,

在△ADE和△BCE中,

∴△ADE∽△BCE,

∴点E是否是四边形ABCD的边AB上的相似点.

(2)如图所示:点E是四边形ABCD的边AB上的相似点,

(3)∵点E是四边形ABCM的边AB上的一个强相似点,

∴△AEM∽△BCE∽△ECM,

∴∠BCE=∠ECM=∠AEM.

由折叠可知:△ECM≌△DCM,

∴∠ECM=∠DCM,CE=CD,

∴∠BCE=∠BCD=30°,

BE= ,

在Rt△BCE中,tan∠BCE= =tan30°= ,

∴ .

点评: 本题是相似三角形综合题,主要考查了相似三角形的对应边成比例的性质,读懂题目信息,理解全相似点的定义,判断出∠CED=90°,从而确定作以CD为直径的圆是解题的关键.

以上就是小编为大家准备的2015年太原中考数学试题,希望能对大家有所帮助。

相关推荐:

2014年吉林白城中考试题及答案

2014年吉林白城中考思想品德历史综合答案

2014年吉林白城中考生物试题

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。