编辑:sx_zhangh
2014-01-02
中考是初中升高中的一个重要阶段,威廉希尔app 精心为大家搜集整理了“2013年江苏淮安市中考数学试题解答题十”,希望对大家的考试有所帮助!
2013年江苏淮安市中考数学试题解答题十
28.(12分)(2013?淮安)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.
(1)当ι=7时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.
考点: |
相似形综合题.3718684 |
分析: |
(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由B到A的过程中,利用方程即可求得; (2)分Q从C到A的时间是3秒,P从A到C的时间是3秒,则可以分当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,和当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC两种情况进行讨论求得t的值; (3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t﹣3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得t的值,从而求解. |
解答: |
解:(1)在直角△ABC中,AC==4, 则Q从C到B经过的路程是9,需要的时间是4.5秒.此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5. 根据题意得:(t﹣4.5)+2(t﹣4.5)=7.5,解得:t=7.
(2)Q从C到A的时间是3秒,P从A到C的时间是3秒. 则当0≤t≤2时,若△PCQ为等腰三角形,则一定有:PC=CQ,即3﹣t=2t,解得:t=1. 当2<t≤3时,若△PCQ为等腰三角形,则一定有PQ=PC(如图1).则Q在PC的中垂线上,作QH⊥AC,则QH=PC.△AQH∽△ABC, 在直角△AQH中,AQ=2t﹣4,则QH=AQ=. ∵PC=BC﹣BP=3﹣t, ∴×(2t﹣4)=3﹣t, 解得:t=;
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC=t﹣3,BQ=2t﹣9,即AQ=5﹣(2t﹣9)=14﹣2t. 同(2)可得:△PCQ中,PC边上的高是:(14﹣2t), 故s=(2t﹣9)×(14﹣2t)=(﹣t2+10t﹣2). 故当t=5时,s有最大值,此时,P在AC的中点.(如图2). ∵沿直线PD折叠,使点A落在直线PC上, ∴PD一定是AC的中垂线. 则AP=AC=2,PD=BC=, 则S△APD=AP?PD=×2×=. AQ=14﹣2t=14﹣2×5=4. 则PC边上的高是:AQ=×4=. 则S△PCQ=PC?=×2×=. 故答案是:7.
|
点评: |
本题是相似三角形的性质,勾股定理、以及方程的综合应用,正确进行分类讨论是关键. |
经过精心的整理,有关“2013年江苏淮安市中考数学试题解答题十”的内容已经呈现给大家,祝大家取得好成绩!
相关推荐:
标签:淮安中考数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。