2016河南漯河中考数学一轮复习必做试题

编辑:

2015-12-21

C级 拔尖题

14.(2013年内蒙古赤峰)如图4­3­47,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤ 15).过点D作DF⊥BC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

(3)当t为何值时,△DEF为直角三角形?请说明理由.

图4­3­47

特殊的平行四边形

1.B 2.C 3.B 4.A 5.C

6.∠B=90°或∠BAC+∠BCA=90°

7.证明:∵四边形ABCD是矩形,

∴AB=CD,AD∥BC,∠B=90°.

∵DF⊥AE,∴∠AFD=∠B=90°.

∵AD∥BC,∴∠DAE=∠AEB.

又∵AD=AE,∴△ADF≌△EAB.

∴DF=AB.∴DF=DC.

8.证明:由平移变换的性质,得

CF=AD=10 cm,DF=AC,

∵∠B=90°,AB=6 cm,BC=8 cm,

∴AC2=AB2+CB2,即AC=10 cm.

∴AC=DF=AD=CF=10 cm.

∴四边形ACFD是菱形.

9.(1)证明:∵点O为AB的中点,OE=OD,

∴四边形AEBD是平行四边形.

∵AB=AC,AD是△ABC的角平分线,

∴AD⊥BC.即∠ADB=90°.

∴四边形AEBD是矩形.

(2)解:当△ABC是等腰直角三角形时,

矩形AEBD是正方形.

∵△ABC是等腰直角三角形,

∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD.

由(1)知四边形AEBD是矩形,

∴四边形AEBD是正方形.

10.D 11.12

12.5 解析:连接BP,交AC于点Q,连接QD.∵点B与点D关于AC对称,∴BP的长即为PQ+DQ的最小值,

∵CB=4,DP=1.∴CP=3,在Rt△BCP中,

BP=BC2+CP2=42+32=5.

13.(1)证明:在矩形ABCD中,

AB=CD,∠A=∠D=90°,

又∵M是AD的中点,∴AM=DM.

∴△ABM≌△DCM(SAS).

(2)解:四边形MENF是菱形.证明如下:

E,F,N分别是BM,CM,CB的中点,

∴NE∥MF,NE=MF.

∴四边形MENF是平行四边形.

由(1),得BM=CM,∴ME=MF.

∴四边形MENF是菱形.

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。