编辑:
2016-01-25
9.(2014年山东泰安,第8题3分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE= CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为( )
A.6 B. 7 C. 8 D. 10
分析:根据直角三角形斜边上的中线等于斜边的一半得到CD= AB=3,则结合已知条件CE= CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.
解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD= AB=3.又CE= CD,
∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,
∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.
点评: 本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.
10.(2014年山东泰安,第12题3分)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为( )
A. cm B. 2 cm C. 2 cm D. 3cm
分析:根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.
解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,
∵沿折痕BD折叠点C落在斜边上的点C′处,
∴∠BDC=∠BDC′,∠CBD=∠ABD= ∠ABC=30°,
∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,
∴∠BDE=∠ABD+∠A′DE= ×180°=90°,
在Rt△BCD中,BD=BC÷cos30°=4÷ = cm,
在Rt△ADE中,DE=BD•tan30°= × = cm.故选A.
点评: 本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.
11. (2014•海南,第6题3分)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )
A. 120° B. 90° C. 60° D. 30°
考点: 直角三角形的性质.
分析: 根据直角三角形两锐角互余列式计算即可得解.
解答: 解:∵直角三角形中,一个锐角等于60°,
∴另一个锐角的度数=90°﹣60°=30°.
故选D.
点评: 本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.
12.(2014•随州,第7题3分)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为( )
A. 100米 B. 50 米 C. 米 D. 50米
考点: 解直角三角形的应用
分析: 过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.
解答: 解:过B作BM⊥AD,
∵∠BAD=30°,∠BCD=60°,
∴∠ABC=30°,
∴AC=CB=100米,
∵BM⊥AD,
∴∠BMC=90°,
∴∠CBM=30°,
∴CM= BC=50米,
∴BD= =50 米,
故选:B.
点评: 此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.
13.(2014•黔南州,第11题4分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )
A. cm B. 2cm C. 3cm D. 4cm
考点: 含30度角的直角三角形.
分析: 根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的记录相等得出ED=CE,即可得出CE的值.
解答: 解:∵ED⊥AB,∠A=30°,
∴AE=2ED,
∵AE=6cm,
∴ED=3cm,
∵∠ACB=90°,BE平分∠ABC,
∴ED=CE,
∴CE=3cm;
故选C.
点评: 此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.
这就是我们为大家准备的中考数学考前必做试题的内容,希望符合大家的实际需要。
相关推荐
标签:来宾中考数学
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。