编辑:
2013-11-21
(2)
分析:(1)方案一:分割成两个等腰梯形;
方案二:分割成一个等边三角形、一个等腰三角形和一个直角三角形;
(2)利用平行四边形的性质、等边三角形的性质、勾股定理作答,认真计算即可.
解:(1)在表格中作答:
分割图形 分割或图形说明
示例:
示例:
①分割成两个菱形.
②两个菱形的边长都为a,锐角都为60°.
①分割成两两个等腰梯形.
②两个等腰梯形的腰长都为a,
上底长都为,下底长都为a,
上底角都为120°,下底角都为60°.
①分割成一个等边三角形、一个等腰三角形、一个直角三角形.
②等边三角形的边长为a,
等腰三角形的腰长为a,顶角为120°.
直角三角形两锐角为30°、60°,三边为a、 a、2a.
(2) 如右图①,连接BD,取AB中点E,连接DE.
∵AB=2a,E为AB中点,
∴AE=BE=a,
∵AD=AE=a,∠A=60°,
∴△ADE为等边三角形,∠ADE=∠DEA=60°,DE=AE=a,
又∵∠BED+∠DEA=180°,
∴∠BED=180°﹣∠DEA=180°﹣60°=120°,
又∵DE=BE=a,∠BED=120°,
∴∠BDE=∠DBE=(180°﹣120°)=30°,
∴∠ADB=∠ADE+∠BDE=60°+30°=90°
∴Rt△ADB中,∠ADB=90°,
由勾股定理得:BD2+AD2=AB2,即BD2+a2=(2a)2,
解得BD= a.
如右图②所示,AC=2OC=2 =2 =2• a= a.
∴BD= a,AC= a.
点评:本题是几何综合题,考查了四边形(平行四边形、等腰梯形、菱形、矩形)、三角形(等边三角形、等腰三角形、直角三角形)的图形与性质.第(1)问侧重考查了几何图形的分割、剪拼、动手操作能力和空间想象能力;第(2)问侧重考查了几何计算能力.本题考查知识点全面,对学生的几何综合能力要求较高,是一道好题
19、(2013年广州市)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC= 时(如图12),求证:CD是⊙O的切线;
(2)当OC> 时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由。
分析:(1)关键是利用勾股定理的逆定理,判定△OCD为直角三角形,如答图①所示;
(2)①如答图②所示,关键是判定△EOC是含30度角的直角三角形,从而解直角三角形求出△ACE的周长;
②符合题意的梯形有2个,答图③展示了其中一种情形.在求AE•ED值的时候,巧妙地利用了相似三角形,简单得出了结论,避免了复杂的运算.
解:(1)证明:连接OD,如答图①所示.
由题意可知,CD=OD=OA=AB=2,OC= ,
∴OD2+CD2=OC2
由勾股定理的逆定理可知,△OCD为直角三角形,则OD⊥CD,
又∵点D在⊙O上,
∴CD是⊙O的切线.
(2)解:①如答图②所示,连接OE,OD,则有CD=DE=OD=OE,
∴△ODE为等边三角形,∠1=∠2=∠3=60°;
∵OD=CD,∴∠4=∠5,
∵∠3=∠4+∠5,∴∠4=∠5=30°,
∴∠EOC=∠2+∠4=90°,
因此△EOC是含30度角的直角三角形,△AOE是等腰直角三角形.
在Rt△EOC中,CE=2OA=4,OC=4cos30°= ,
在等腰直角三角形AOE中,AE= OA= ,
∴△ACE的周长为:AE+CE+AC=AE+CE+(OA+OC)= +4+(2+ )=6+ + .
②存在,这样的梯形有2个.
答图③是D点位于AB上方的情形,同理在AB下方还有一个梯形,它们关于直线AB成轴对称.
∵OA=OE,∴∠1=∠2,
∵CD=OA=OD,∴∠4=∠5,
∵四边形AODE为梯形,∴OD∥AE,∴∠4=∠1,∠3=∠2,
∴∠3=∠5=∠1,
在△ODE与△COE中,
∴△ODE∽△COE,
则有 ,∴CE•DE=OE2=22=4.
∵∠1=∠5,∴AE=CE,
∴AE•DE=CE•DE=4.
综上所述,存在四边形AODE为梯形,这样的梯形有2个,此时AE•DE=4.
点评:本题是几何综合题,考查了圆、含30度角的直角三角形、等腰直角三角形、等边三角形、梯形等几何图形的性质,涉及切线的判定、解直角三角形、相似三角形的判定与性质等多个知识点,难度较大
总结:中考数学几何综合压轴题就为大家分享到这里了,希望能帮助同学们巩固复习学过的知识,供大家参考!
相关推荐:
标签:2013中考试题
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。