初中数学说课稿:反比例函数的应用

2010-12-07 10:23:50 字体放大:  
编者按:各省市教师资格考试认定考试已经开始,威廉希尔app 为了能够助考生考个好的成绩,特地整理教师资格认定考试说课指导资料汇总供各位考生好好复习。在此,威廉希尔app 预祝各位考生考试顺利。

   相关推荐:
   初中数学说课稿:一元二次方程的概念
   初中数学说课稿:相似三角形
   初中数学说课稿:三角函数说课稿


五.说教学过程的设计
(一)创设情景,提出问题
“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:
去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?
为了很好的解决这一问题,我们共同来学习以下两道题目:
设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
(二)范例设计
学习例1:
小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,
平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题.
②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量.从这两问,再引导学生探求自变量的取值范围. ④
问中,指导学生画图,分析问题(多媒体展示函数图象).
设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲.后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此.
由于学生初次接触反比例函数的应用问题,我选择教师引导法.引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想.在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点.
学习例2:
小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:
①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?
②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
③由于绿化以及辅助用地的需要,经过实地测量, 蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?
这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题.
问题(1):这是一个几何体积问题,问题中包含有哪些量? 哪些是常量?哪些是变量?
问题(2):在容积不变的情形下, 蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式.
问题(3): 函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?
问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象.)
问题(5):题中②、③两问能否利用图象来解?如何解?
问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?
设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。