来源:51EDU威廉希尔app
2018-04-10
在平面上到一定点(中心)有同一距离(半径)之点的轨迹叫做圆周,简称圆。那么同学们赶快一起来看看圆的方程知识点!
1、圆的定义
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程 ,圆心 ,半径为r;
(2)一般方程
当 时,方程表示圆,此时圆心为 ,半径为
当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线 ,圆 ,圆心 到l的距离为 ,则有
(2)过圆外一点的切线:
①k不存在,验证是否成立
②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系
通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;
当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当 时,两圆内切,连心线经过切点,只有一条公切线;
当 时,两圆内含; 当 时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
练习题:
1.若圆(x-a)2+(y-b)2=r2过原点,则( )
A.a2-b2=0 B.a2+b2=r2
C.a2+b2+r2=0 D.a=0,b=0
【解析】选B.因为圆过原点,所以(0,0)满足方程,
即(0-a)2+(0-b)2=r2,
所以a2+b2=r2.
2.已知定点A(0,-4),O为坐标原点,以OA为直径的圆C的方程是( )
A.(x+2)2+y2=4 B.(x+2)2+y2=16
C.x2+(y+2)2=4 D.x2+(y+2)2=16
【解析】选C.由题意知,圆心坐标为 (0,-2),半径r=2,其方程为x2+(y+2)2=4.
3.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程是( )
A.(x-2)2+y2=5
B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=25
D.x2+(y+2)2=25
【解析】选A.圆心(-2,0)关于原点对称的点为(2,0),所以所求圆的方程为(x-2)2+y2=5.
【举一反三】本题中圆的方程不变,则其关于y轴对称的圆的方程为____________.
【解析】圆心(-2,0)关于y轴对称的点为(2,0),
所以已知圆关于y轴对称的圆的方程为(x-2)2+y2=5.
答案:(x-2)2+y2=5
以上就是我们给同学们整理的圆的方程知识点啦!想要了解更多精彩的内容,大家可点击【原创专栏】来看~~
标签:高中
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。