由左上图知,丙是长15厘米、宽10厘米的矩形,面积为15×10=150(厘米2)。
因为甲、丙形成的矩形的长等于原正方形的边长,乙、丙形成的矩形的长也等于原正方形的边长,所以可将两者拼成右上图的矩形。右上图矩形的宽等于10+15=25(厘米),长等于原正方形的边长,面积等于
(甲+丙)+(乙+丙)
= 甲+乙+丙)+丙
= 1725+150
= 1875(厘米2)。
所以原正方形的的边长等于1875÷25=75(厘米)。剩下的长方形的面积等于75×75-1725=3900(厘米2)。
例6有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合(见右图)。已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。
分析与解:把黄色正方形纸片向左移动并靠紧盒子的左边。由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。此时露出的黄、绿两部分的面积相等,都等于
(14+10)÷2=12。
因为绿:红=A∶黄,所以
绿×黄=红×A,
A=绿×黄÷红
=12×12÷20=7.2。
正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2。
练习20
1.等腰直角三角形的面积是20厘米2,在其中做一个最大的正方形,求这个正方形的面积。
2.如左下图所示,平行四边形ABCD的周长是75厘米,以BC为底的高是14厘米,以CD为底的高是16厘米。求平行四边形ABCD的面积。
3.如右上图所示,在一个正方形水池的周围,环绕着一条宽2米的小路,小路的面积是80米2,正方形水池的面积是多少平方米?
4.如右图所示,一个长方形被一线段分成三角形和梯形两部分,它们的面积差是28厘米2,梯形的上底长是多少厘米?
5.如下图,在三角形ABC中,BD=DF=FC,BE=EA。若三角形EDF的面积是1,则三角形ABC的面积是多少?
6.一个长方形的周长是28厘米,如果它的长、宽都分别增加3厘米,那么得到的新长方形比原长方形的面积增加了多少平方厘米?
7.如下图所示,四边形ABCD的面积是1,将BA,CB,DC,AD分别延长一倍到E,F,G,H,连结E,F,G,H。问:得到的新四边形EFGH的面积是多少?
以上就是多边形的面积教案全文,希望能给大家带来帮助!
更多文章进入:
下一篇:从不同角度观察多个物体教学设计