您当前所在位置:

五年级数学位值原则教案

2012-12-19

个数之差必然能被9整除。例如,(97531-13579)必是9的倍数。

例2有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。求原来的两位数。[

分析与解:由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。

设这个两位数为x。由题意得到

(10x+1)-(100+x)=666,

10x+1-100-x=666,

10x-x=666-1+100,

9x=765,

x=85。

原来的两位数是85。

例3 a,b,c是1~9中的三个不同的数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?

分析与解:用a,b,c组成的六个不同数字是

\

\

 

这六个数的和等于将六个数的百位、十位、个位分别相加,得到

所以,六个数的和是(a+b+c)的222倍。

例4用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?

解:由例3知,可以组成的六个三位数之和是(2+8+7)×222,

所以平均值是(2+8+7)×222÷6=629。

例5一个两位数,各位数字的和的5倍比原数大6,求这个两位数。

\

 

(a+b)×5-(10a+b)=6,

5a+5b-10a-b=6,

4b-5a=6。

当b=4,a=2或b=9,a=6时,4b-5a=6成立,所以这个两位数是24或69。

例6将一个三位数的数字重新排列,在所得到的三位数中,用最大的减去最小的,正好等于原来的三位数,求原来的三位数。

分析与解:设原来的三位数的三个数字分别是a,b,c。若

\

\

 

由上式知,所求三位数是99的倍数,可能值为198,297,396,495,594,693,792,891。经验证,只有495符合题意,即原来的三位数是495。

练习17

1.有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数之和是970。求原来的两位数。

2.有一个三位数,将数码1加在它的前面可以得到一个四位数,将数码3加在它的后面也可以得到一个四位数,这两个四位数之差是2351,求原来的三位数。

\

 

5.从1~9中取出三个数码,用这三个数码组成的六个不同的三位数之和是3330。这六个三位数中最小的能是几?最大的能是几?

6.一个两位数,各位数字的和的6倍比原数小9,求这个两位数。

7.一个三位数,抹去它的首位数之后剩下的两位数的4倍比原三位数大1,求这个三位数。

以上就是五年级数学位值原则教案全文,希望能给大家带来帮助!

更多文章进入:

威廉希尔app 小学频道      五年级语文教案