(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的。
(2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5
(3)观察、分析。
①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?
②18和30的公约数就必须包含18和30公有的什么?
③18和30公有的质因数有哪些?
④18和30的公约数和是哪些?(1、2、3、6(2×3))
⑤6是怎样得出来的?
(4)归纳板书。
18和30的6是这两个数全部公有质因数的乘积。
(5)求的一般书写格式。
为了简便,我们把两个短除式合并成一个如: 18 30
让学生分组讨论合并后该怎样做?
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出?
④为什么不把商也连乘进去?
(6)尝试练习。
做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。
(7)抽象概括求的方法。
①谁能说说求的方法。
②引导学生看教材第68页求两个数的的方法。
四、课堂实践
做练习十四的1、2、3题。
五、课堂小结
学生总结今天学习的内容。
六、课堂作业
1.做练习十四的第4题。
2.做练习十四的12*题。
课题二:两种特殊情况的
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的,培养学生的观察能力。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出两种特殊情况的。
教学过程
一、创设情境
1、思考并回答:①什么是公约数,什么是?②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)
2、求30和70的?
3、说说下面每组中的两个数有什么关系?
7和21 8和15
二、揭示课题
我们已经学会求两个数的,这节课我们继续学习求这两种特殊情况的(板书课题)
三、探索研究
1.教学例3
(1)求出下列几组数的:7和21 8和15 42和14 17和19
(2)观察结果:通过求这几组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。
(4)尝试练习。
做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。
四、课堂实践
1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。
2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的理由。
3.做练习十四的第9题,学生口答集体订正。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1、做练习十四的第8、10、11题。
2、有兴趣、有余力的同学可做练习十四的第13*题和思考题。