您当前所在位置:

五年级数学下册《分数和除法》教案(在线版)

2011-04-26

生①: 2÷3=2/3(张)

借助想象,巩固研究方法。

刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5张饼平均分给8个人,每人分多少张吗?

生①:略。(课件演示)

(5)刚才大家研究了分饼的问题,如果不借助学具你能计算7÷9的结果吗?(7/9)

【评析】借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

观察算式,概括分数与除法的关系。

师:大家观察这些算式,看看你能发现什么?

生①:分数的分子,相当于除法中的被除数,分母相当于除法中的除数。

师:被除数÷除数=

如果用a表示被除数,b表示除数,那么a÷b可以写成什么形式?

大家还需要补充什么?(b≠0)

师:刚才我们研究了分数与除法的联系,他们之间有区别吗?(小组讨论)

生:除法是一种运算,而是一种具体的数量。

小组内互相说一说联系与区别。

小结

通过刚才的研究,我们发现了分数与除法的关系,你能说说刚才的研究哪些是发现的,哪些又是发明的?

生1:分数与除法的关系是我们发现的,但是分饼的方法是我们发明的。

生2:用字母表示它们之间的关系是我们发明的。

【评析】学生的精彩的回答说明学生已经沉浸在了本节课的探索之中,且有了自己学习数学的思考与心得,这正是我们每一位教师所期望的。

练习

出示上课伊始的口算题组

师:大家能用分数分别表示这些除法算式的结果吗?

教师解释0.7÷2= 是可以的,这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

【评析】本组练习使学生知道了不论被除数小于、大于或等与除数,都可以用分数形式表示商,这样不仅加深和扩展了对分数意义的理解,同时为讲假分数及分数的基本性质打下基础。

【总评】

本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

一、直观演示是学生理解分数与除法的关系的前提。

由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的 就是 张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的 就是 张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的 就是2/3张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

a:你们是几张几张的分的?

b:每人每次分得多少张饼?

c:分了几次,共分了多少张?(就是3个 张就是 张)

d:怎样才能看出是 张?

问题的提出针对性强,有利于学生把握数学的本质。

三、 用发展的思维去理解所学的知识,注重了知识的系统性。

数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2= ,部分学生会觉着的 表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。