通过这部分的练习,你能得出什么结论?
引导学生概括:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大.
2.比较2.35元和2.41元的大小.
提问:
①它们的整数部分各是多少?表示多少?(2,2元)
②整数部分的数相同,该比哪一位?(十分位)
③十分位上的数各是多少?各是几角呢?(3和4,3角和4角)
④十分位上的数哪个大?(4大)
⑤还用比百分位上的吗?(不用比了)
⑥那么可以判断哪个数大?
引导学生说出:2.35元<2.41元.
提问:在什么情况下看十分位上的数比较大小?
引导学生明确,当整数部分相同的情况下,看十分位上的数比较.
板书:看十分位.(写在2.35元<2.41元后面).
反馈:(投影)
比较下面各组数的大小.
3.21○3.12 0.86○0.92 4.83○4.59
12.4○12.5 5.17○5.09 6.27○6.31
根据刚才的练习,你又可以得出什么结论?
引导学生概括:当整数部分相同时,看十分位,十分位上的数大的那个数就大.
3.比较0.07米和0.059米的大小.
讨论,试说一说,怎样比较这两个位数不同的小数的大小?
引导学生根据前两个例题类推出:整数部分和十分位上的数都相同,就要看百分位,百分位上的7,表示7个0.01米,5表示5个0.01米,因此0.07米>0.059米.
让学生观察米尺上这个长度的长短加以验证.
反馈:
4.36○4.37 3.064○3.065 12.147○12.14
2.189○2.198 0.832○0.831 8.352○8.36
这几组题你是根据什么比较的?
通过这个练习,你又能得出什么结论?
引导学生明确:整数部分和十分位上的数都相同,要看百分位上的数,百分位上数大的那个数就大.
板书:看百分位.
师启发:刚才我们研究了各种情况的小数比较大小的方法,谁能把这种比较的方法完整地概括一下?
全班议论后,总结出:
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大;……
教师强调:一要注意从高位比起,按照数位顺序一位一位地比,这一点是与整数大小比较方法是相同的,比到能分出大小就不再往下比了;二要注意小数比较大小与整数比较大小还有不同的地方,整数比较大小当整数数位不同时,位数多的那个数就大,而小数比较大小与位数的多少无关,是要按照数位顺序从高位到低位比较.