编辑:
2012-08-21
(一)合作交流,认识倍数和因数
1、动手操作。
出示操作要求:用12个同样大的正方形拼成一个长方形,有几种不同的拼法?观察拼成的长方形,每排摆了几个?摆了几排?用乘法算式把各种摆法表示出来。
2、提问:你表示的乘法算式是怎样的?猜猜他可能是怎么摆的?
根据学生回答,在黑板上板书出乘法算式,电脑演示相应的图形。
板书:12×1=12 6×2=12 4×3=12
(设计意图:从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”。 用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。)
3、谈话:用12个同样的小正方形可以摆出三种不同的长方形,写出三道不同的乘法算式。根据一道乘法算式,如4×3=12,我们可以说
“12是4的倍数,12也是3的倍数。
3是12的因数,4也是12的因数。”(边说边在屏幕上显示)
指名像老师一样说一说。
一起横着读一读,再竖着读一读,你读懂了些什么?
师:如果我说 “4是因数,12是倍数,行吗?”
明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。
根据6×2=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据12×1=12呢?
(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)
4、这就是我们今天要研究的“因数和倍数”。为了研究方便,通常在研究因数和倍数时,所说的数都是指不为零的自然数。
5、练习。
谁也能说一道算式,考考大家谁是谁的倍数,谁是谁的因数?
若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”
学生自由发言,统一认识。
小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。
(设计意图:将“想想做做”第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子比较单一,教师就需及时“介入”,发挥引导作用,让学生从内涵上加深对倍数和因数意义的理解。)
二、自主探索,学会找一个数的倍数。
标签:三年级数学试卷
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。