您当前所在位置:

数的整除分数、小数的基本性质

2013-03-01

【编者按】为了丰富教师的生活,威廉希尔app 小学频道搜集整理了数的整除分数、小数的基本性质,供大家参考,希望对大家有所帮助!

数的整除分数、小数的基本性质

教学要求:

使学生进一步理解整除、约数、倍数、公约数、公倍数、最大公约数、最小公倍数、质数、合数、互质数、质因数、分解质因数、能被2、3、5整除数的特征等概念,并进一步理解它们之间的联系与区别。

进一步理解分数、小数、的基本性质;小数点移动引起小数大小变化的规律。

教学过程:

今天我们复习有关数的整除的知识和分数、小数的基本性质。这部分知识的要领较多,它又是有关运算和解决这些概念,掌握有关概念的联系。

复习数和整除

由“整除”这个基本概念引出有关概念。

举例说说什么叫整除,什么叫约数和倍数。

如24÷6=4 36÷12=3

24能被6整除 36能被12整除

思考:3÷2=1.5 6÷1.5=4这两个式是否表示整除关系?为什么?

总结整除的概念:

应注意两点:1)被除数和除数(不等于0)必须是整数:

2)商也是整数且没有余数。

进一步理解质数、合数、互质数、质因数、分解质因数的概念,以及它们之间的关系。

(把24、36分解质因数,通过分解来进一步理解上述概念)

举例说说能被2、3、5整除数的特征,以及偶数与奇数。

通过上述分析过程,逐步形成下列板书:

教材81页上的“做一做”

复习分数、小数的基本性质

在括号里填上合适的数,并说出根据。

1/2=()/4=6/()=()/20 6/18=()/6=3/()=1/()

在()里填“>”“<”或“=”

12.05()12.050 1.402()1.420 0.03()0.0300 0.08()0.8

举例说说小数点移动位置后,小数大小会发生什么变化?

完成81页下的“做一做”

巩固练习

完成教材练习十六中第1、2题。

写出能同时被2、3、5整除的最小两位数。

完成教材练十六中第3、4、5、6题。

练习十六第7~12题。

以上就是数的整除分数、小数的基本性质全文,希望能给大家带来帮助!

更多文章进入:

威廉希尔app 小学频道      六年级数学教案