1.教学例3。
(1)出示课文例题情境图。
问:从图中你看到了什么?
①把相同体积的水倒入底面积不同的杯子。
②杯里水的高度不相同。
③杯子底面积小的,水的高度比较高,杯子底面积大的,水的高度比较低。
(2)出示表格。
高度/㎝302015105
底面积/㎝21015203060
体积/㎝3
请学生认真观察表中数据的变化情况。
问:你有什么发现?
学生不难发现:底面积越大,水的高度越低,底面积越小,水的高度越高,而且高底和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
(3)归纳反比例的意义。
在这一基础上,教师明确说明反比例的意义,并板书。
因为水的体积一定,所以水的高度随着底面积的变化而变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定。
板书出示:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
(4)用字母表示。
如果用字母X和Y表示两种相关联的量,用K表示它们的乘积(一定),反比例关系的式子可以怎么表示?
学生探讨后得出结果。
X×Y=K(一定)
2.想一想。
师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
3.你还有什么疑问?
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察课文“你知道吗”中的图像。
(1)反比例关系也可以用图像来表示。
(2)表示两个量的点不在同一条直线上,点所连接起来是一条曲线。
(3)图像特征不要求掌握。
4.课堂小结。
说一说成反比例关系的量的变化特征。
三巩固练习
完成课文练习七第6~11题。
3、练习课(一)
教学内容:练习课(一)
教学目标:
1.使学生进一步理解反比例的意义,能正确判断两种量是否成反比例。
2.使学生能正确判断两种量是否成比例,成什么比例,提高学生的人析能力。
教学过程:
一基础练习
1.填一填,说一说。
(1)每箱木瓜的个数一定,运来木瓜的箱数和木瓜总个数如下表。
箱数/箱481632
总个数/个3264
①把表格填写完整,说一说你是怎么做的。
②说一说箱数和总个数的变化情况。
③这里哪一个量不变?
④箱数和总个数成什么比例?
(2)木瓜的总个数一定,每箱个数与所装的箱数情况如下表。
每箱个数481020
箱数5025
①你能把表格填写完整吗?
②说一说每箱个数和箱数的变化情况。
③这里哪一个量一定?
④每箱个数和箱数成什么比例?
(3)看一本书,每天看的页数和所看天数的情况如下表。
每天看的页数48101620
所看天数804032
①把表格填写完整。
②说一说你是怎么做的。
③这里哪一个量一定,你是怎么知道的?
④每天看的页数与所看天数有什么关系?说明理由。
(4)征订《XX学习报》,征订的份数与应付的钱数如下表。
征订份数/份5040302010
应付的钱数/元15001200
①请你把表格补充完整。
②征订的份数与应付的钱数成什么比例?说明理由。
2.正、反比例意义。
问:你是怎样判断两种量是否成正比例或反比例的?正反比例关系和反比例关系有什么不同?
过程要求:
(1)学生独立思考,尝试归纳。
(2)同学之间互相交流,学会表达。
(3)全班交流。
使学生明确几个要点:
正比例:
①两种相关联的量。
②一种量增加,另一种量也相应增加;一种量减少,另一种量也相应减少。
③两种量的比值一定。
反比例:
①两种相关联的量;
②一种理增加,另一种量反而减少;一种量减少,另一种量反而增加;
③两种量的乘积一定。
二综合练习
判断下面各题中两种量是否成下比例或反比例。
(1)每袋面粉的质量一字,面粉的总质量和袋数。()
(2)一个人的年龄和体重。()
(3)长方形的周长和宽。()
(4)长方形的长一定,面积与宽。()
(5)三角形的高一定,面积与底。()
(6)圆的面积与半径。()
过程要求:
(1)逐一出示以上各题。
(2)学生判断,并说明理由。
(3)教师小结。(方法,关键)
4、练习课(二)
教学内容:练习课(二)
教学目标:
通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。
教学过程:
一复习
判断下面每题中的两种量是成正比例还是成反比例?
1.速度一定,路程和时间。
2.正方形的边长和它的面积。
3.生产总时间一定,生产一个零件所用时间和零件总数。
4.中国儿童报的订数和钱数。
二引导练习
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
出示表格。
表一:
路程/千米4080160200320
时间/时12458
表二
速度/每时行多少千米12090604030
时间/时346912
1.说一说。
提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?
2.想一想:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
师板书:速度×时间=路程
师:当速度一定时,路程和时间成什么比例关系?
当路程一定时,速度和时间成什么比例关系?
当时间一定时,路程和速度成什么比例关系?
3.比较正比例和反比例关系。
通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?
学生同桌或前后桌讨论,教师提问并板书如下:
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例:两种量中相对应的两个数的积一定。关系式X×Y=K(一定)
4.小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?
作业