您当前所在位置:

《典型应用题》之教案

2011-03-30

典型应用题

书P87页9—15。

【复习要求】

1、通过复习能正确迅速地判断不同类型的典型应用题。

2、能用特定的方法(或公式)来解答典型应用题。

【复习重点】认识几种常见的典型应用题。

【复习程序】

一、知识梳理

1、典型应用题的种类。

⑴平均数应用题。

用移多补少的思想,把12个不相等的部分数平均分为相等的几份的应用题。

其数量关系式:

总数量÷总份数=平均数

⑵归一应用题。

能够先求出一个单位量(如速度、工作效率、单价、单产等)的思路来解答的一类应用题叫做归一应用题。

⑶相遇问题。

相遇问题是研究两个运动物体(或人)从两个不同地方,站同一路线相对运动的问题。

关系式:速度和×相遇时间=路程。

分析相遇问题时要抓住其特征,注意出发时间、地点、方向的变化,通常画出示意图帮助自己理解和分析。

二、例题。

例1:4台吊车7小时卸煤1414吨,照这样计算,增加5台同样的吊车,多工作8小时先卸煤多少吨?

这是一道典型的归一应用题,单一量没有变即工效没有变:1414÷4÷7,工作台数增加到(4+5)台,工作时间增加到(7+8)小时,根据正归一应用题求总量的算式为:1414÷4÷7×(4+5)×(7+8)=6817.5(吨)

答:共卸煤6817.5吨。

例2:甲、乙两车同时从A、B两地出发,相向而行。甲车每小时行驶42千米,乙车每小时行驶38千克,两车相遇时离B地336千米。A、B两地相距多少千米?

分析:根据题意,画图解

甲每小时行42千米 乙每小时行38千米

甲 乙

336千米

?千米

从线段图中可以看出,336千米正是乙从乙地出发到甲地相遇时所走过的路程。而乙的速度已知,这样就可以求出相遇时间,即:

336÷48=7(小时)。进而通过速度和×相遇时间=距离。

(42+48)×(336÷48)=90×7=630(千米)

答:AB两地相距630千米。

三、巩固练习。

1、师生讨论P87页第10题是什么类型的题,怎样解答。

2、讨论第12、15题。

在解答过程应该注意什么?(画图)

3、作业练习。

P87页11、12、13、14、15题。

四、补充练习。

1、小红骑自行车从甲地开往乙地,3小时行75千米,5小时到达乙地。甲乙两地相距多少千米?

2、两列火车相对行驶,在两地间的中点相遇,甲车每小时行驶76千米,相遇时行了5小时。乙车每小时行驶95千米,它比甲车迟出发几小时?