编辑:sx_songj
2013-12-10
【摘要】如何才能提高孩子们的学习成绩,多阅读老师的备课教案也是有一定作用的,威廉希尔app 整理了认识三角形教案,希望对同学们有帮助。
认识三角形
教学内容:p.22、23、24(“想想做做”)
教材简析:
这部分内容主要让学生认识三角形,包括了解三角形的两边之和大于第三边。第22页的例题主要帮助学生初步形成三角形的概念。第23页的例题着重让学生通过操作活动,体验和了解三角形的两边之和大于第三边。
教学难点:认识两边之和大于第三边
教学目标:
1、使学生联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,了解三角形两边之和大于第三边。
2、使学生体会单侥幸是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。
教学准备:学具盒、尺等
教学过程:
一、导入:
出示例题图,问:在图上我们可以找到一种很常见的图形,是什么?(三角形)
生活中的三角形随处可见,说说哪些地方也能看到?
揭示课题:认识三角形
二、做三角形:
1、我们可以用不同的方法来得到一个三角形,利用手边的材料,比比谁的方法多?
交流:(1)、用小棒摆。讲评时注意:小棒摆的时候一定要首尾相接,不能有多出来的部分。
(2)、在钉子板上围。讲评时注意:只要有三个顶点,如果发现边不够直的话,需要把三角形调整得大一些。
(3)、用三角板或尺上的其他三角形直接描画。
(4)、在纸上分别画围起来的三条线段,也能得到一个三角形。
……
2、三角形各部分名称:
一起动手画一个三角形,说说各部分的名称:3个顶点、3条边、3个角
三、三边关系:
1、是不是所有的三根小棒都能围成一个三角形?
用学具盒里的小棒分别摆一摆,是不是都能围成一个三角形呢?
学生摆完后交流:(1)同一种颜色(一样长)的小棒肯定是能摆成一个三角形的。
(2)一红两绿这三根小棒是不能围成一个三角形的
小结:看来并不是所有的三根小棒都能围成三角形。那为什么会围不成了呢?
2、探究不能围成三角形的原因:
(1)说说你用一红两绿三根小棒怎么就围不成三角形了呢?
(两根绿的太短了,碰不到。)画一画(图略)
在图上分别标出三边为a、b、c,a+b<c p="" 不能围成三角形
(2)想象:如果把一根绿的换成长一点的,和原来那根绿的合起来正好和红的一样长,行不行?画一画(图略)
在图上分别标出三边为a、b、c,a+b=c 不能围成三角形>
(3)那究竟什么时候能围成三角形呢?
可能会有学生会猜想,a+b>c
再用小棒摆一摆,摆完后再比一比,是不是符合a+b>c?
结合画图,指出:当两条边的长度和小于第三边的时候,这两条边根本就不能碰到,所以不能围成三角形;当两条边的长度和等于第三边的时候,就变成了3条线段重合在一起的一条线段,不是三角形;只有当两边的长度和大于第三边的时候,那它们就会在第三边上面的某一处碰到,就围成了一个三角形。
3、练习巩固:
(1)有这样两根小棒,分别是6厘米和8厘米,第三根小棒多长那么它们就能围成一个三角形?说说理由。你发现了什么规律?
(先可考虑最短的,如果是2厘米,那么和6厘米的合起来正好是8厘米,只能重合在一起,变成线段,所以至少要比2厘米长一点,在整数范围里,那至少就得3厘米。再从最长的角度考虑,6厘米和8厘米的合起来要14厘米,不能有14厘米长,那样也是重合后变成了线段,应该要比14厘米稍微短一点,即13厘米。)
(发现:比两边之差多1,比两边之和少1)
(2)继续练习,如:6厘米和6厘米,3厘米和4厘米……
四、完成书上的想想做做:
1、在点子图上画出两个三角形:
指出:画的时候,要把三角形的三个顶点和点子重合。
2、下面哪几组中的三条线段可以围成一个三角形?为什么?
在学生交流完后追问第一种情况:那如果老师把2厘米的加上6厘米的,不就变成“大于”4厘米,那就可以围成三角形了。这样的判断对不对?为什么?
(6厘米是其中最长的一条边,它单独一条就比别的两条都长,所以,要用比较短的边合起来,然后和最长的比。)
3、从学校到少年宫有几条路线?走哪一条路最近?
请你用今天学得的知识来解释这一现象。
【总结】认识三角形教案就为大家整理到这儿了,希望小编整理的教案对老师和同学们都有帮助,祝大家在威廉希尔app 学习愉快。
小编推荐:
标签:四年级数学教案
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。