您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 数论

小学奥数数论发散思维题精解

编辑:sx_yanl

2015-10-12

数学学习有助于脑力的开发,多做奥数题有助于我们数学思维的提升,威廉希尔app 为大家整理了小学奥数数论发散思维题,供大家学习参考。

只有1

一道简单的问题是:用1、+、×、()的运算来分别表示23和27,哪个数用的1较少?要表达2008,最少要用多少个1?

我们先给出从1到15的表达式。

1=1,

2=1+1,

3=1+1+1,

4=(1+1)×(1+1),

5=(1+1)×(1+1)+1,

6=(1+1)×(1+1+1),

7=(1+1)×(1+1+1)+1,

8=(1+1)×(1+1)×(1+1),

9=(1+1+1)×(1+1+1),

10=(1+1)×((1+1)×(1+1)+1),

11=(1+1)×((1+1)×(1+1)+1)+1,

12=(1+1+1)×(1+1)×(1+1),

13=(1+1+1)×(1+1)×(1+1)+1,

14= (1+1)×((1+1)×(1+1+1)+1),

15= (1+1+1)×((1+1)×(1+1)+1)。

把用1的个数写成数列,就是{1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, ...}。

对于23,

23 = (1+1)×((1+1)×((1+1)×(1+1)+1)+1)+1,

1的个数为11。

对于27,

27 = (1+1+1) × (1+1+1) × (1+1+1)

1的个数为9。

对于2008这样的大数,要寻找表达式很困难。

我找到的表达式是

(((1+1)×(1+1)×(1+1+1)×(1+1+1)+1)×(1+1)×(1+1+1)+1)×(1+1+1)×(1+1+1)+1=2008

一共用了24个1,但是不是用了最少的1,证明起来有一定难度。

以上就是小学奥数数论发散思维题的全部内容,希望对大家的学习有所帮助

相关推荐:

详细解答小学奥数年龄问题附答案

经典题目讲解:六年级奥数题质因数附答案

标签:数论

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。