您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 数论

数的整除问题奥数专项训练题

编辑:

2015-04-24

3.数的整除特征

①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

例如:判断123456789这九位数能否被11整除?

解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。

再例如:判断13574是否是11的倍数?

解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7的倍数?

解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。

再例如:判断3546725能否被13整除?

解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.

以上就是为大家提供的数的整除问题奥数专项训练,希望能够对大家有用,更多相关内容,请大家及时锁定威廉希尔app 小学频道!

相关推荐

小学整数拆分的奥数题10道  

奥数整数拆分专项练习题(含答案)  

标签:数论

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。