您当前所在位置:首页 > 小学 > 奥数 > 小学奥数专项 > 计数

计数归纳法练习5

编辑:sx_yangk

2013-09-26

威廉希尔app 为您整理了计数归纳法练习5,希望和您一起探讨奥数!

1.用数学归纳法证明"当n为正偶数为xn-yn能被x+y整除"第一步应验证n=__________时,命题成立;第二步归纳假设成立应写成_____________________.

2. 数学归纳法证明3能被14整除的过程中,当n=k+1时,3应变形为____________________.

3. 数学归纳法证明 1+3+9+…+3

4.求证 n能被9整除.

答案:

1. x2k-y2k能被x+y整除

因为n为正偶数,故第一值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除.

2.25(34k+2+52k+1)+56·32k+2

当n=k+1时,34(k+1)+2+52(k+1)+1=81·34k+2+25·52k+1=25(34k2+52k+1)+56·33k+2

3.证明(1)当n=1时,左=1,右=(31-1)=1,命题成立.

(2)假设n=k时,命题成立,即:1+3+9+…3k-1=(3k-1),则当n=k+1时,1+3+9+…+3k-1+3k=(3k-1)+3k=(3k+1-1),即n=k+1命题成立.

4.证明(1)当n=1时,13+(1+1)3+(1+2)3=36能被9整除.

(2)假设n=k时成立即:k3+(k+1)3+(k+2)3能被9整除,当k=n+1时

(k+1)3+(k+2)3+(k+3)3= k3+(k+1)3+(k+2)3+9k2+9k+27= k3+(k+1)3+(k+2)3+9(k2+k+3)能被9整除

由(1),(2)可知原命题成立.

由威廉希尔app 为您提供的计数归纳法练习5,感谢您阅读!

阅读本文的小伙伴们还看了:

 

小学奥数的面积计算试题与答案

 

更多精彩内容请点击小学奥数专项

标签:计数

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。