编辑:liuxw
2011-03-15
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.为培养这方面的能力,本讲将从几何图形的问题入手,逐步分析应从哪些方面来观察思考。因此,学习本讲的知识有助于养成全面地、由浅入深、由简到繁观察思考问题的良好习惯,可以逐步掌握通过观察发现规律并利用规律来解决问题的方法。
下面就来看几个例子。
例1 按顺序观察图5—1与图5—2中图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
分析 观察中,注意到图5—1中每行三角形的个数依次减少,而正方形的个数依次增多,且三角形的个数按4、3、X、1的顺序变化.显然X应等于2;图5—2中黑点的个数从左到右逐次增多,且每一格(第一格除外)比前面的一格多两个点.事实上,本题中几何图形的变化仅表现在数量关系上,是一种较为基本的、简单的变化模式。
解:在图5—1的“?”处应是三角形△,在图5—2的“?”处应是
例2 请观察右图中已有的几个图形,并按规律填出空白处的图形。
分析 首先可以看出图形的第一行、第二列都是由一个圆、一个三角形和一个正方形所组成的;其次,在所给出的图形中,我们发现各行、各列均没有重复的图形,而且所给出的图形中,只有圆、三角形和正方形三种图形.由此,我们知道这个图的特点是:
① 仅由圆、三角形、正方形组成;
② 各行各列中,都只有一个圆、一个三角形和一个正方形。
因此,根据不重不漏的原则,在第二行的空格中应填一个三角形,而第三行的空格中应填一个正方形。
解略。
例3 按顺序观察下图中图形的变化规律,并在“?”处填上合适的图形.
分析 显然,图(a)、图(b)中都是圆,而图(c)中却不是圆;同时,图(a)、(c)中都有3个图形,而(b)中只有两个.由此可知:图(a)到(b)的变化规律对应于图(c)到(d)的变化规律.再注意到图(a)到图(b)中图形在繁简、多少、位置几方面的变化,就容易得到图(d)中的图形了。
解:在上图的“?”处应填如下图形.
标签:小学四年级奥数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。