您当前所在位置:首页 > 小学 > 奥数 > 小学六年级奥数

小学最新六年级奥数鸡兔同笼同类型例题及答案

编辑:

2015-10-21

答案解析:

1.分析

如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了。所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?

(4×6-128)÷(4-2)

=(184-128)÷2

=56÷2

=28(只)

②免有多少只?

46-28=18(只)

答:鸡有28只,免有18只。

2.分析1

我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了。由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人)。那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1:

一班:[135-5+(7-5)]÷3=132÷3

=44(人)

二班:44+5=49(人)

三班:49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

分析2

假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人。这时的总人数又该是多少?

解法2:(135+5+7)÷3

=147÷3

=49(人)

49-5=44(人),49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

3.分析

这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

4.分析

这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数。我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛。这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只)。

解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?

6×18=108(条)

②有蜘蛛多少只?

(118-108)÷(8-6)=5(只)

③蜻蜒、蝉共有多少只?

18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)

⑤蜻蜒多少只?

(20-13)÷2-1)=7(只)

答:蜻蜒有7只。

5.分析

我们分步来考虑:

①假设租的10条船都是大船,那么船上应该坐6×10=60(人)。

②假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:[6×10-(41+1)÷(6-4)

=18÷2=9(条)

10-9=1(条)

答:有9条小船,1条大船。

科学的学习方法和合理的复习资料能帮助大家更好的学好数学这门课程。希望为大家准备的六年级奥数鸡兔同笼同类型例题及答案,对大家有所帮助!

相关推荐:

解读六年级奥数土方习题附答案

解题方法精选:小学奥数列方程解题

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。