编辑:sx_yanl
2015-10-21
为了能帮助广大小学生朋友们提高数学成绩和数学思维能力,威廉希尔app 小学频道特地为大家整理了六年级奥数同余问题,希望能够切实的帮到大家,同时祝大家学业进步!
1、求437×309×1993被7除的余数。
思路分析:如果将437×309×1993算出以后,再除以7,从而引得到,即437×309×1993=269120769,此数被7除的余数为1。但是能否寻找更为简变的办法呢?
437≡3(mod7)
309≡1(mod7)
由“同余的可乘性”知:
437×309≡3×1(mod7)≡3(mod7)
又因为1993≡5(mod7)
所以:437×309×1993≡3×5(mod7)
≡15(mod7)≡1(mod7)
即:437×309×1993被7除余1。
2、70个数排成一行,除了两头的两个数以外,每个数的三倍恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,……,问这一行数最右边的一个数被6除的余数是几?
思路分析:如果将这70个数一一列出,得到第70个数后,再用它去除以6得余数,总是可以的,但计算量太大。
即然这70个数中:中间的一个数的3倍是它两边的数的和,那么它们被6除以后的余数是否有类似的规律呢?
0,1,3,8,21,55,144,……被6除的余数依次是
0,1,3,2,3,1,0,……
结果余数有类似的规律,继续观察,可以得到:
0,1,3,2,3,1,0,5,3,4,3,5,0,1,3,2,3,……
可以看出余数前12个数一段,将重复出现。
70÷2=5……10,第六段的第十个数为4,这便是原来数中第70个数被6除的余数。
思路分析:我们被直接用除法算式,结果如何。
更多六年级奥数同余问题和其他相关复习资料,尽在威廉希尔app !请大家及时关注!
相关推荐:
标签:小学六年级奥数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。