编辑:donghk
2012-12-11
【编者按】为了丰富同学们的学习生活,威廉希尔app 小学频道搜集整理了六年级奥数知识:和与差的整除性,供大家参考,希望对大家有所帮助!
六年级奥数知识:和与差的整除性
我们知道,2、4、6、8、10、……都是能被2整除的整数.如果在这些数之间作和运算或差运算:
2+4=6,4+6=10,6+8=14,
2+6=8,4+8=12,6+10=16,
2+8=10,4+10=14,…………
2+10=12,…………
…………
2+4+6=12,
2+4+6+8=20,
2+4+6+8+10=30,
…………
4-2=2,6-4=2,8-6=2,
6-2=4,8-4=4,10-6=4,
8-2=6,10-4=6,…………
10-2=8,
…………
我们发现,它们之间的和或差也都能被2整除.因此,我们有理由猜想:能被2整除的数之间的和或差也能被2整除.
我们还知道,3、6、9、12、15、……都是能被3整除的数.如果在这些数之间作和运算或者差运算:
3+6=9,6+9=15,9+12=21,
3+9=12,6+12=18,9+15=24,
3+12=15,6+15=21,………
3+15=18,…………
………
3+6+9=18,
3+6+9+12=30,
3+6+9+12+18=48,
………
6-3=3,9-6=3,12-9=3,
9-3=6,12-6=6,15-9=6,
12-3=9,15-6=9,………
15-3=12,………
………
这些运算的结果也都能被3整除.因此,我们又有理由猜想:能被3整除的数之间的和或差也能被3整除.
有了前面的两点猜想,我们似乎可以作更大胆的猜想:如果有一些数能被某个数整除,那么,这些数之间的和或差也一定能被某个数整除.
令人不放心的是,关于这个猜想,我们还仅只是考察了“某数”是2和3的部分情形.是不是对所有的情形都正确呢?解决这个问题的办法有两个:一是再接着逐个去验证考察。但这是一件永远也办不完的麻烦事情!另一个办法是用符号(这个发明用符号来表达数学关系的前辈确实是一个伟大的天才!)表示出“猜想”中的数学关系,然后,去想方设法说清它正确的道理.亲爱的读者,你能完成这项工作吗?
【规律】
如果有整数A、B、C、……都能被整数m整除,那么,就有A±B±C±……
的结果也能被m整除.
事实上,整数A、B、C、……都能被整数m整除,那么,这些整数就可以分别写成m的倍数形式:
A=a?m,B=b?m,C=c?m,……
(其中a、b、c仍为整数).这样
A±B±C±……
=a?m±b?m±c?m±……
=(a±b±c±……)?m.
显然,后面的结果是m的倍数,能被m整除.这就说明了原式
A±B±C±……
也能被m整除.猜想是正确的.
【练习】
运用上面的规律你能判断出下面哪些算式的得数能被2、3或5整除.
(1)123456789×1991+987654321;
(2)987654321×1992-123456789;
(3)2+4+6+……+1998+2000;
(4)5000-4998+4996-4994+……+4-2;
(5)1×2+3×4+5×6+……+99×100;
(6)1×2×3+4×5×6+7×8×9+……+97×98×99;
(7)1×2×3×4×5+6×7×8×9×10+11×12×13×14×15+……+96×97×98×99×100;
(8)19921+19922+19923+……+19922000.
以上就是六年级奥数知识:和与差的整除性全文,希望能给大家带来帮助!
更多文章进入:
标签:小学六年级奥数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。