编辑:sx_wanghf
2014-04-10
小学奥数华杯赛知识点考点分析:
构造论证与最值:
一、整体比重构造论证、极值问题在华杯赛中还是占有相当的比重。从十四、十五届决赛试卷来看,整体比重在16.7%。如第十届的第3和12题,十五届的9和11题,考的都是这种类型的试题。
二、知识点分布以及难度分布构造论证、极值问题等问题考察知识点比较分散,从最近四年的试题来看,考察过的知识点主要有:
1、等差数列估算和极值问题;
2、操作问题-----划数、最大值最小值;
3、逻辑推理-----足球赛、数独;
4、构造问题------相间染色。
【考察难度】所考知识点以中等试题为主,含个别难题,试题以3★、4★为主。学生基本上能下手,但是真正要得满分,还是需要加强各方面的训练!
【最近四届试题分析】
[15届决赛]右图中有5个由4个1×1的正方格组成的不同形状的硬纸板。问能用这5个硬纸板拼成右图中4×5的长方形吗?如果能,请画出一种拼法;如果不能,请简述理由。
【答案】不能
【知识点】染色分析+奇偶性分析
【分析】将长方形黑白染色,将5个图形也进行黑白染色,如下图
除④号盖住3个黑的或者1个黑的,其它均盖住一黑一白,所以5个纸板只能盖住11个黑的或者9个黑的。矛盾!
【总结】此类题目难度不大,基本方法也是常规的黑白相间染色。但是对解题的步骤有很高的要求!
[15届决赛]足球队A,B,C,D,E进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分,若A,B,C,D队总分分别是1,4,7,8,请问:E队至多得几分?至少得几分?
【答案】7、5
【知识点】逻辑推理---足球赛
【分析】假设ABCDE5支队伍总分为abcde,则五队总分为a+b+c+d+e=20+e。易知单循环赛共10场,总得分不会超过30分。只要有一场比赛踢平,则总得分减少1分。A队一定是3负1平;B队有可能是4平或者1胜1平2负;C队一定是2胜1平1负;D队一定是2胜2平。所以比赛至少有3场平局,至多有5场平局。最后总得分最多27分,最少25分。对应的E队伍最多7分,最少5分。
【总结】对这类题,考的是足球赛中的一些常识。需要我们学生对基本的结论很清楚。如总的场次、总分和平局数量的关系等等。
[14届决赛]将七位数“2468135”重复写287次组成一个2009位数“24681352468135…”。删去这个数中所有位于奇数位(从左往右数)上的数字后组成一个新数;再删去新数中所有位于奇数位上的数字;按照上述方法一直删除下去知道剩下一个数字为止,则最后剩下的数字是______。
【答案】2
【知识点】操作---划数
【分析】通过找规律可以发现,第一次留下的数是编号为2的倍数的数,第二次留下的数是编号为4的倍数的数,依次类推,到最后留下的数应该是最接近2009的,而且能写成2n形式的数,应为第1024个,7个数为一个周期,1024÷7=146…2。对应周期的第二个数为2。.
【总结】题目本身看着很难,但是通过找规律可以快速的找到方法。有的时候碰到很复杂的试题的时候,不妨通过找规律的方法哦。
[14届决赛]在50个连续的奇数1,3,5,…,99中选取k个数,使得它们的和为1949,那么k的最大值是多少?
【答案】43
【知识点】极值问题---等差数列
【分析】要使得个数尽量多,选的数尽量小即可。考虑前n个奇数的和1+3+5+…+(2n-1)=n2.
452=2025,442=1936。所以选的个数不能超过44个。但44个奇数的和必为偶数,矛盾!这样一来,最多只能取43个,而事实上是可以是实现的。只需要从1,3,5,,89删去两个奇数即可!满足它们的和为89即可!
【总结】此题难度较大,需要学生具备估算能力、奇偶分析能力。
[13届决赛]黑板上写着1至2008共2008个自然数,小明每次擦去两个奇偶性相同的数,再写上它们的平均数,最后黑板上只剩下一个自然数,这个数可能的最大值和最小值的差是______。
【答案】2005
【知识点】极值问题---操作类
【分析】先求剩下的最大值,那么擦去的数应该尽量小,
首先擦去1,3,写上2,
擦去2,2,写生2,擦去2,4,写上3,
……
擦去2006,2008,写上2007;
同理可知剩下的数最小为2。
所以最大值和最小值的差为2005。
【总结】此题需要学生自己去构造操作的方法。
[12届决赛]下图是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些方格填有1至9的数字。小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小青将第4列的数字从上向下写成一个9位数。请写出这个9位数,并且简单说明理由。
【答案】327468951.
【知识点】逻辑推理---数独
【分析】用(a,b)表示第a行第b列的方格,第4列已有数字1、2、3、4、5,第6行已有数字6、7、9,所以方格(6,4)=8;第3行和第5行都有数字9,所以(7,4)=9;正中的“小九宫”中已有数字7,所以只能是(3,4)=7;此时,第4列中只余(5,4),这一列只有数字6未填,所以(5,4)=6。所以,第4列的数字从上向下写成的9位数是:327468951。
【总结】这种题型考察的是生活中常见的数独,只要我们的学生接触过这类题,整体难度不会很大。对数独,只要多接触,方法自然而然的就会成型。
相关推荐:
标签:希望杯
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。