编辑:sx_wanghf
2014-04-21
华杯赛试题揭秘——数论:
个人认为数论是小学阶段学生学习的最大难点,因为数论是纯理论性知识,而不像应用题、几何等问题能够形象的表示出来,让学生有直观的感受。即使有些问 题只是一些公式的套用就可以解决的,但是对于深入理解上学生还需要下一番功夫才能学好这部分内容。作为小学奥数的一个较大知识模块,这部分内容也自然是每 次考试的必考内容之一。
数论部分包括的主要知识点有:1。数的整除。2。质数、合数和分解质因数。3。约数和倍数。4。余数问题。5。奇数与偶数。还有,位值原理和数的进制也曾考过。数论部分内容是四、五、六每个年级都要考的,所占比重也都差不多,10%-30%,五年级略微多一些。
四年级考察的知识点还比较基础,也比较简单,主要考察凑整、最大值最小值、约数的个数、奇偶数的性质、数的整除等。我们可以一起看一道2010年“走 美杯”的真题,题目如下:今年某地举行一位名人的一百多年的诞辰纪念,这位名人的诞生年代是四位数,其中有两个相邻的数相同,这四个数字的和是24,这位 名人诞生于()年。这道题目虽然从表面看已知条件很少,其实有很多隐含条件,首先年份首位一定为1,老人的年纪为100多岁,所以第二位只能为8或9,再 结合两个数字相同可以得到中间两个数一定是8,由于数字和为24,很容易尝试出结果为1887。
相较于四年级五六年级的数论考点加入了质数合数、余数问题、位值原理等,部分题目还是有一定的难度的。在这数论部分的学习过程中,除了夯实基础、熟记 公式外,还要灵活应用各种解题方法,开阔思路。必要时还需试数,但是试数之前一定要尽量缩小范围,减少计算量。而且近几年的考题也越来越灵活,越来越接近 实际生活。
以今年的“数学解题能力展示”六年级组初赛第5题为例,一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101。那么 2011年最后一个能被101整除的日子是,那么=_____________。此道题目在解题过程中就要联系实际,因为月份只有1~12,而日期因月份 不同也有所不同。
具体解题过程为:
首先令=12,根据101的整除性质“四位一截,奇偶相加”可以继续解出101|,101|2011+=3211+,101|80+,所 以=21,=1221。另外,如果考生没有掌握101的整除性质,还可以通过试除法得出答案。 20111231÷101=199121…10,31-10=21,所以=1221,十分简单。
综合上面两个例题,不难发现,数论的题目看似难度比较大,其实很多已知条件都像一个个小零件一样,隐藏在题目当中。学生需要做的就是准确无误的将他们 找出来,组装在一起,这时候你会发现,其实题目已然变得很简单。而这些需要学生平时多积累,多思考,并且多接触不同的题型,开阔眼界和思路。
相关推荐:
标签:华杯赛
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。