编辑:sx_songyn
2014-06-03
2014年小升初数学典型应用题
1. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇?
解:如果甲、乙相向而行,需要600÷1000÷(4+5)×60=4分钟相遇。当1-3+5-7+9=5分钟,少1分钟就相遇。 所以1+3+5+7+9-1=24分钟。 所以在8时24分相遇。
解:"依次按照1,3,5,7……连续奇数分钟的时候调头走路"正确的理解应该是前进1分钟,后退3分钟,前进5分钟,后退7分钟,前进9分钟……
甲车速度:4000/60=200/3(米/分) 乙车速度:5000/60=250/3(米/分)两车正常相遇是600/(200/3+250/3)=4分 1-3+5-7+9=5分,所以是在那个9分里相遇的,比9少1分 600+150*(3+7-1-5)=1200米 1200/150=8分 则相遇要1+3+5+7+8=24分,他们在8时24分相遇。
2. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?
解:两队单独做:6+1=7,5+2=7,说明甲队和乙队都是以7天一个周期。
甲队:76÷7=10周……6天。说明甲队在76天里工作了76-10=66天。
乙队:89÷7=12周……5天。说明乙队在89天里工作了89-12×2=65天。
两队合作:1÷(6/66+5/65)=5+23/24,即共做5个周期。
另外还剩1-6/66×5-5/65×5=23/143。
需要23/143÷(1/66+1/65)=5+35/131,即合作5天后,余下的甲工作1天完成。
共用去7×5+5+1=41天完成。因此是41-2-31=8,即1999年1月8日完工。
3. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题?
解:小王做对的题占题目总数的2/3,说明题目总数是3的倍数。小李做错了5道,说明两人都做错的不会超过5道。 即题目总数不会超过5÷1/4=20道。
又因为都做错的题目是题目总数的1/4,说明题目总数是4的倍数。
既是3的倍数又是4的倍数,且不超过20的数中,只有3×4=12道符合要求。
所以小王做对了12×2/3=8道题。
解:小李做错了5题,两人都做错的题数占题目总数的1/4,所以最多20题。
因为都是自然数,两人都做错的题的数量可能为{1,2,3,4,5}
对应总题数分别为{4,8,12,16,20}。
其中只有12满足:使小王做对的题占题目总数的2/3为自然数。所以小王做对8题。
解:设两人同错题数为A,
则有A÷(1/4)×(2/3)=A×8/3就等于小王做对的题数,
可得出A定是3的倍数(A<5),并且总题数是4的倍数,那整数解只能是12了。
4. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分?
解:根据题意2分5个换成5分2个,一组少了3个,总共少了100-79=21个,是21/3=7组,则2分硬币有5*7=35个
根据题意1分5个换成5分1个,一组少了4个,总共少了79-63=16个,是16/4=4组, 则1分硬币有5*4=20个 则5分硬币有100-35-20=45个 所以原有2分和5分硬币共值:2*35+5*45=295分。
5. 甲、乙两物体沿环形跑道相对运动,从相距150米(环形跑道上小弧的长)的两点出发,如果沿小弧运动,甲和乙第10秒相遇,如果沿大弧运动,经过14秒相遇.已知当甲跑完环形跑道一圈时,乙只跑90米.求环形跑道的周长及甲、乙两物体运动的速度?
解:甲乙的速度和是150÷10=15米/秒。环形跑道的周长是15×(10+14)=360米。
甲行一周360米,乙跑了90米,说明甲的速度是乙的360÷90=4倍。
所以乙的速度是15÷(4+1)=3米/秒,甲的速度是15-3=12米/秒。
6. 竞赛成绩排名次,前7名平均分比前四名的平均分少1分,前10名平均分比前7名的平均分少2分,问第五、六、七名三人得分之和比第八、九、十名三人得分之和多了几分?
解法一:因为前7名平均分比前4名的平均分少1分,所以第5、6、7名总分比前4名的平均分的3倍少1×7=7分;因为前10名平均分比前7名的平均分少2分 所以第8、9、10名总分比前7名平均分的3倍少2×10=20分,所以比前4名平均分的3倍少20+1×3=23分。 所以第5、6、7名总分比第8、9、10名总分多23-7 =16分
解法二:以10人平均分为标准,第8、9、10名就得拿出7×2=14分给前7名。那么他们3人就要比标准总分少14分。第5、6、7名的原本比标准总分多3×2=6分,但要拿出1×4=4分给前4名。那么他们3人比标准总分多6-4=2分。因此第5、6、7名3人得分之和比第8、9、10名3人的得分之和多2+14=16分。
解:因为:前7名平均分比前四名的平均分少1分,前10名平均分比前7名的平均分少2分
所以:第五、六、七名总分比前4名的平均分的3倍少1*7=7分;第八、九、十名总分比前7名平均分的3倍少2*10=20分,比前4名平均分的3倍少20+1*3=23分。
所以:第五、六、七名总分减去第八、九、十名总分 =23-7 =16分
回答者:uynaf - 举人 五级 1-24 23:17
解:设前四名的平均分为A,根据题意得:
前四名总分为4A,前七名总分为(A-1)*7,
五、六、七名得分为7A-7-4A=3A-7;
前十名总分为(A-3)*10,
八、九、十名得分为10A-30-(7A-7)=3A-23;
则得分之和多了3A-7-(3A-23)=16分。
7. 单独完成一项工作,甲按规定时间可提前3天完成,乙则要超过规定时间5天才能完成.如果甲、乙合作3天后剩下的工作继续由乙单独做,那么刚好在规定时间里完成.甲、乙两人合作要几天完成?
解:甲做3天相当于乙做5天,那么完成全工程的时间比是3:5。 甲和乙所用的时间相差3+5=8天。 所以,
甲单独做完成全工程需要8÷(5-3)×3=12天,
乙单独做完成全工程需要12+8=20天。
所以,两人合作需要1÷(1/12+1/20)=7.5天。
8. 甲、乙两人同时从A地出发,以相同的速度向B地前进,甲每行5分钟休息2分钟,乙每行210米休息3分钟,甲出发后50分钟到达B地,乙到达B地比甲迟了10分钟.已知两人最后一次的休息地点相距70米,两人的速度是多少?
解:甲50÷(5+2)=7次……1分钟,说明甲休息了7次共2×7=14分钟。
乙休息了14+10=24分钟,休息了24÷3=8次。
乙行到甲最后休息的地方时,行了210×8+70=1750米,实际行了5×7=35分。
所以实际的速度是1750÷35=50米/秒。
全程就是50×(50-14)=1800米。
平均速度:甲1800÷50=36米/秒,乙1800÷(50+10)=30米/秒。
解:甲用50分钟,所以是走了7个5分钟,休息了7个2分钟,最后又走了1分钟。有效行进时间是36分。
因为甲乙速度相同,所以乙行走的有效时间也是36分钟,走到甲的最后休息点有效行进时间是36-1=35分钟;
因为乙一共使用了60分钟,所以有24分钟在休息,共休息了8次,其间行走了210*8=1680米,加上两人最后一次的休息地点之间70米,共计1750米。
所以乙在35分钟的有效行进时间内可以前进1750米,甲乙的【行进速度】均为1750/35=50米/分钟。 可以计算出:AB距离为50*36=1800米。
所以:
甲完成这段路程的【平均速度】是1800/50=36米/分钟
乙完成这段路程的【平均速度】是1800/60=30米/分钟
9. 有甲、乙两袋大米,甲袋中的大米比乙袋中的多20千克,把甲袋中大米的1/3到进乙袋,乙袋中的大米就比甲袋中的大米多10千克.甲袋中原有大米多少千克?
解:要使乙袋比甲袋多10千克, 就得从甲袋拿出(10+20)÷2=15千克。
说明这15千克相当于甲袋的1/3, 所以甲袋有15÷1/3=45千克。
10. 有两堆煤共重8.1吨,第一堆用掉2/3,第二堆用掉3/5,把两堆剩下的合在一起,比原来第一堆还少1/6,原来第一堆煤有多少吨?
解:用掉后,第一堆煤剩下1/3,第二堆煤剩下2/5,
两堆剩下的合在一起后,占原来第一堆的1-1/6=5/6.
这其中有1/3是原来第一堆剩下的,其余的5/6-1/3=1/2是原来第二堆剩下的.
也就是说原来第二堆的2/5等于第一堆的1/2.
所以原来第二堆的总数是原来第一堆的1/2÷2/5=5/4倍.
所以原来第一堆煤有:8.1÷(1+5/4)=3.6吨
解:如果第一堆用掉2/3-1/6=1/2,
这用了的1/2就和第二堆剩下的1-3/5=2/5相等。
所以,第二堆是第一堆的1/2÷2/5=5/4。
所以,第一堆煤有8.1÷(1+5/4)=3.6吨
相关推荐:
标签:小升初数学知识点
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。