您当前所在位置:首页 > 小升初 > 小升初奥数

精选小升初奥数数论知识点:约数与倍数

编辑:sx_duxl

2016-10-27

“奥数”是奥林匹克数学竞赛的简称。学习奥数可以锻炼思维,是大有好处的。下面威廉希尔app 为大家分享小升初奥数知识点约数与倍数,希望大家认真学习!

一、约数与倍数知识点

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:

1、短除法求最小公倍数;

2、分解质因数的方法

二、例题解析

例1、两数乘积为2800,而且已知其中一数的约数个数比另一数的约数个数多1.那么这两个数分别是()、()。

分析:先把2800分解质因数,找出属于完全平方数的约数的个数,再进一步分析,找出符合题意的答案.

解答:解:任何一个正整数,其约数应该是成对出现的,这意味着,一般情况下,一个正整数应该有偶数个约数;但正整数是完全平方数时,就会有奇数个约数;

根据题意:“两个数的乘积等于2800,其中一个数的约数个数比另一个数的约数多1”,这表明:这两个数中有一个是完全平方数;

由于:2800=2×2×2×2×5×5×7,其属于完全平方数的约数有五个:22=4、42=16、52=25、102=100、202=200,

分别进行分析:2800=4×700,各有3个和16个约数,不符合题意,=7×400,各有2个和15个约数,不符合题意,

2008=16×175,各有5个和6个约数,符合题意,=25×112,各有3个和10个约数,不符合题意,=28×100,各有6个和9个约数,不符合题意.

故答案为:16,175.

点评:解决此题关键是先将2800分解质因数,再逐步找出符合条件的数.

例2、若a,b,c是三个互不相等的大于0的自然数,且a+b+c=1155,则它们的最大公约数的最大值为(),最小公倍数的最小值为(),最小公倍数的最大值为()

解答:165、660、57065085

1)由于a+b+c=1155,而1155=3×5×7×11。令a=mp,b=mq,c=ms.m为a,b,c的最大公约数,则p+q+s最小取7。此时m=165.

2)为了使最小公倍数尽量小,应使三个数的最大公约数m尽量大,并且使A,B,C的最小公倍数尽量小,所以应使m=165,A=1,B=2,C=4,此时三个数分别为165,330,660,它们的最小公倍数为660,所以最小公倍数的最小值为660。

3)为了使最小公倍数尽量小,应使三个数两两互质且乘积尽量大。当三个数的和一定时,为了使它们的乘积尽量大,应使它们尽量接近。由于相邻的自然数是互质的,所以可以令1155=384+385+386,但是在这种情况下384和386有公约数2,而当1155=383+385+387时,三个数两两互质,它们的最小公倍数为383×385×387=57065085,即最小公倍数的最大值为57065085。

以上是威廉希尔app 为大家分享的小升初奥数知识点约数与倍数,希望能帮助大家为今后的学习打下基础!

相关推荐

必备小升初数学考试真题及参考答案 

2017北师大版小升初数学练习题

标签:小升初奥数

免责声明

威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。