编辑:sx_yangmj
2016-06-03
拿硬币游戏是一个两个人玩的游戏,要求每个参加者轮流拿走若干硬币,谁拿到最后一枚硬币谁就算赢。下面我们来小升初奥数--倒推转化巧拿硬币游戏。
游戏1:桌上放着15枚硬币,两个游戏者(你和你的一位同学)轮流取走若干枚。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得全部15枚硬币。
游戏开始了,你一定在想:有没有能保证你赢的办法呢?若有,这办法又是什么呢?现在你把自己想象成处于即将赢的状态,该你取硬币了,而且桌面上硬币恰好不超过5枚,这时,你可以一次拿走桌上的所有硬币,成为赢者。现在,你能不能从这样的终点状态往前推,找出一个状态,使得只要你的对手处在这一状态,那么无论他拿走几枚硬币,你都会处于理想的获胜状态?不难发现,如果你的对手处于桌面有6枚硬币的状态,那么无论他拿走几枚(从1枚到5枚)硬币,桌上都会剩下至少1枚至多5枚硬币,这样胜利一定属于你。也就是说,谁拿走第(15-6=)9枚硬币,谁将获胜。于是,游戏1获胜情况就与下面游戏2结果相同。
游戏2:桌上放着9枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得15枚硬币。
由对游戏1的倒推分析,我们不难知道,游戏2的获胜情况与下面游戏3结果相同。
游戏3:桌上放着3枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取1枚,至多取5枚,谁拿到最后一枚谁就赢得15枚硬币。
在游戏3中,你只要第一个从桌上拿走3枚硬币便可赢。可见,你要在游戏1中取胜,只要第一个取走桌面上的3枚硬币便一定能赢。
想一想:利用上面的最佳战略方法和你的小朋友做下面的游戏:桌上放30枚硬币,两个游戏者(你和你的一位同学)轮流取走若干个。规则是每人每次至少取2枚,至多取6枚,谁拿到最后一枚谁就赢得全部30枚硬币。
小升初奥数--倒推转化巧拿硬币游戏。你们赢了吗?
标签:小升初奥数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。