编辑:
2015-07-07
解答:这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?
(27-15)×6=72
那么:第一次吃草量27×6=162第二次吃草量23×9=207
每天生长草量45÷3=15
原有草量(27-15)×6=72或162-15×6=72
21头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)
方程解答:
在学习到方程。这题目很容易解决。
利用以上例子我们有以下解法:
方程解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。
那么可以列方程:
x+6y=27×6
x+9y=23×9
解得x=72,y=15
若放21头牛,设n天可以吃完,则:
72+15n=21nn=12天
以上就是我们为大家提供的关于小升初奥数中的牛吃草问题总结,想要了解更多知识,就关注我们吧。
相关推荐:
标签:小升初奥数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。