编辑:
2012-11-28
四、竞赛数学--奥林匹克数学
随着数学竞赛的发展,已逐渐形成一门特殊的数学学科--竞赛数学,也可称为奥林匹克数学。将高等数学下放到初等数学中去,用初等数学的语言来表述高等数学的问题,并用初等数学方法来解决这些问题,这就是竞赛数学的任务。这里的问题甚至解法的背景往往来源于某些高等数学。数学就其方法而言,大体上可以分成分析与代数,即连续数学与离散数学。由于目前微积分不属于国际数学奥林匹克的范围,所以下放离散数学就是竞赛数学的主体。很多国际数学奥林匹克的试题来自数沦、组合分析、近世代数、组合几何、函数方程等。当然也包含中学课程中的平面几何。
竞赛数学又不同于上述这些数学领域。通常数学往往追求证明一些概括广泛的定理,而竞赛数学恰恰寻求一些特殊的问题,通常数学追求建立一般的理论和方法,而竞赛数学则追求用特殊方法来解决特殊问题;而且一旦某个问题面世,即成为陈题,又需继续创造新的问题。竞赛数学属于"硬"数学范畴,它通常也与纯粹数学一样,以其内在美,包括问题的简练和解法的巧妙,作为衡量其价值的重要标准。
竞赛数学不能脱离现有数学分支而独立发展,否则就成了无源之水,所以它往往由某些领域的专家兼搞,如参加国际数学奥林匹克的中国代表团的出色教练单?,就是一位数论专家。
国际数学奥林匹克的精神是鼓励用巧妙的初等数学方法来解题,但并不排斥高等数学方法和定理的使用。例如在第31届国际数学奥林匹克中,有学生在解题时用到了贝特朗假设,也称车比雪夫定理,即当n大于1时,在n和2n之间必定有一个素数,还有人在解题时用到了谢尔宾斯塞定理,即一个平方数表成s个平方数之和的通解形式。这些定理须在华罗庚所著的《数论导引》(大学数学系研究生教本)或更专门的书中才能找到。这样不仅已是"杀鸡用牛刀",而且按某外国教练的说法,"他们在用原子弹炸蚊子,但蚊于被炸死了!"这样做是允许的,但不是国际数学奥林匹克所鼓励的。
国际数学奥林匹克的一个难试题,经简化后的证明要写三四页,这不仅大大超过中学课本的深度,也不低于大学数学系一般课程的深度,当然不包括大学课程的广度。实际上,大学数学系课程中,一条定理的证明长达3页者并不多。一个好试题的解答,大体上相当于一篇有趣的短论文。因此用这些问题来考核青少年的数学素质是相当科学的。它们的解决需要参赛者有相当宽广的数学基础知识,再加上机智和创造性。这与单纯的智力小测验完全不同。国际上的数学竞赛范围,大体上从小学四年级到大学二年级。小学生因基础知识太少,这期间的所谓数学竞赛,其实是智力小测验型。对大学生应强调系统学习,要求对数学有一个整体了解。因此数学竞赛的重点应是中学,特别是高中。
现在已经积累了丰富的数学竞赛题库,可供中学师生和数学爱好者练习。国际上也已经有了竞赛数学的专门杂志。
五、数学竞赛在中国
我国的数学竞赛始于1956年,当时举办了北京、上海、武汉、天津四城市的高中数学竞赛。华罗庚、苏步清、江泽涵等最有威望的数学家都积极出面领导并参与这项工作。但由于"左"的冲击,至1965年,只零零星星地举行过6届,"文化大革命"开始后,数学竞赛更被看成是"封、资、修"的一套而被迫全部取消。直到"四人帮"被打倒,我国的数学竞赛活动于1978年又重新开始,并从此走上了迅速发展的康庄大道。1980年前的数学竞赛属于初级阶段,即试题不脱离中学课本。1980年以后,逐渐进入高级阶段。我国于1985年第一次参加国际数学奥林匹克,1986年开始名列前茅,1989和1990年连续两年获得团体总分第一。
我国成功地举办了第31届国际数学奥林匹克,这标志着我国的数学竞赛水平已达到国际领先水平。第一,中国获得团体总分第一,说明我国金字塔式的各级竞赛和选拔体系及奥林匹克数学学校和集中培训系统是完善的,第二,我国数学家对35个国家提供的100多个试题,进行了简化与改进,从中推荐出28个问题供各国领队挑选,结果被选中5题(共需6题),这说明我国竞赛数学的水平是相当高的。第三,各国学生的试卷先由各国领队批改,然后由东道主国家组织协调认可。我们组织了近50位数学家任协调员,评分准确、公平,提前半天完成了协调任务,说明我国的数学有相当的实力。第四,这是首次在亚洲举行国际数学奥林匹克,中国的出色成绩鼓舞了发展中国家,特别是亚洲国家。除此而外,这次竞赛的组织工作也是相当不错的。
在中国,从老一辈数学家,中青年数学家,直至中小学老师,成千上万人的共同努力,才在数学竞赛方面获得了今天的成就。这里特别要提到华罗庚,他除倡导中国的数学竞赛外,还撰写了《从杨辉三角谈起》《从祖冲之的圆周率谈起》《从孙子的"神奇妙算"谈起》《数学归纳法》和《谈谈与蜂房结构有关的数学问题》5本小册子,这些是他的竞赛数学作品。我国在1978年重新恢复数学竞赛后,他还亲自主持出试题,并为试题解答撰写评论。中国其他优秀竞赛数学作品有段学复的《对称》阂嗣鹤的《格点和面积》姜伯驹的《一笔画和邮递路线问题》等。这里还应提到王寿仁,他从跟华罗庚一起工作起,一直到今天,始终领导并参与了数学竞赛活动。他带领中国代表队3次出国参加国际数学奥林匹克,并领导了第31届国际数学奥林匹克的工作。1980年以后,我国基本上由中青年数学家接替了老一辈数学家从事的数学竞赛工作,他们积极努力,将中国的数学竞赛水平推向一个新的高度。裘宗沪就是一位突出代表。他从培训学生到组织领导数学竞赛活动,从3次带领中国代表队参加国际数学奥林匹克到举办第31届国际数学奥林匹克,均作出了杰出贡献。
六、关于我国数学竞赛的几个问题
1. 要认真总结经验。既要总结成功的经验,也要总结反面的教训。特别是1956年至1977年的22年中只小规模地举行了6次数学竞赛,完全停止了16年,比匈牙利因两次世界大战而停止数学竞赛的时间长一倍多,这也从一个侧面反映了"左"的危害。要允许甚至鼓励对数学竞赛发表各种不同看法,以避免大轰大嗡、大起大落及"一刀切"。当有了缺点时,要冷静分析,划清数学竞赛内含的不合理性与工作中的缺点的界线。
2. 完善领导体制。可否设想,国家教委和中国科协通过中国数学会数学奥林匹克委员会(或其他形式的一元化领导),统一领导与协调全国各级数学竞赛活动和国际数学奥林匹克的参赛和组织培训工作。成立数学奥林匹克基金会,协助某些数学竞赛活动,奖励数学竞赛优胜者和作出贡献的领导、教练、中小学教师等。
3. 向社会作宣传。宣传数学竞赛的意义和功能,以消除误解,例如"数学竞赛是中小学生搞的智力小测验","这是选拔天才,冲击了正常教学","教师,特别是大学教师,搞数学竞赛是不务正业"等。要用事实说明数学竞赛活动的成绩。例如仅仅"文革"前的几次低层次数学竞赛中,已有一些竞赛优胜者成才了。如上海的汪嘉冈、陈志华,北京的唐守文、石赫,他们现在已经是国内的著名中年数学家,有的已获博士导师资格。他们在"文革"中都被耽误了10年,否则完全会有更大成就。
4. 处理好普及与提高的关系。数学竞赛需要分学校、市、省、全国、冬令营、集训班金字塔式地进行。前3个层次是普及型的,试题应不脱离中学数学课本范围,面向广大学生和教师。国家级竞赛及以后的活动是提高型的,参赛者的面要迅速缩小。至于冬令营和集训队,全国只能有几十个学生参加。数学奥林匹克学校要注意质量,宜办得少而精。对于参加数学学校的学生要严格挑选,不要妨碍他们德、智、体的全面发展。除冬令营和集训班需要少数数学家集集中时间出试题和进行培训工作外,宜鼓励广大数学家和中小学教师利用业余时间从事数学竞赛活动,不要妨碍大家的正常工作。总之,数学竞赛的普及部分与提高部分不要对立,而要有机地结合起来。
5. 对数学竞赛优胜者要继续进行教育和培养。一方面要充分肯定优胜者的成绩并加以鼓励,另一方面也要告诉竞赛优胜者,必须戒骄戒躁,谦虚谨慎,要成为一个好数学家或其他方面的专家,还须经过长期不懈的锄。不要将竞赛获胜看成唯一的目的,要看成鼓励前进的鞭策。还要为数学竞赛优胜者创造较好的深入学习的机会,使他们能迅速成长。例如可以考虑允许某些理工科大学在高中全国数学竞赛优胜者中,自行选拔一部分学生免试入学。
6. 对数学竞赛活动作出贡献的人员,包括组织领导者、教练与中小学教师的工作成绩要充分肯定并给予奖励。在他们的工作考核中,作为提职晋级的依据之一。
更多内容请进入:
标签:小升初奥数
威廉希尔app (51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。