2017 年浙江省初中毕业升学考试(嘉兴券)

数学 参考答案与评分标准

一、选择题(本题有10小题,每题3分,共30分)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	C	В	C	A	D	D	В	A	C

- 二、填空题(本题有6小题,每题4分,共24分)
- 11. b(a-b).
- 12. 2.

13. $(32+48\pi)$ cm².

- 14. 3球.
- 15. $\frac{1}{13}$; $\frac{1}{n^2 n + 1}$. 16. $12(\sqrt{3} 1)$ cm; $(12\sqrt{3} 18)$ cm.
- 三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23 题每题 10 分, 第 24 题 12 分, 共 66 分)
- 17. (1) 解: 原式=3+2

=5.

(2) 解: 原式= m^2-4-m^2

=-4.

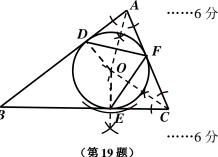
……6分

18. 解: 错误的是①②⑤.

去分母, 得 3 (1+x) −2 (2x+1) \leq 6,

去括号, 得 $3+3x-4x-2 \le 6$,

移项, 得 $3x-4x \le 6-3+2$,


合并同类项,得 $-x \leq 5$,

两边都除以-1, 得 $x \ge -5$.

- 19. (1) 如图, ⊙ 即为所求.
 - (2) 连结 OD, OE, 则 $OD \perp AB$, $OE \perp BC$,

$$\therefore \angle ODB = \angle OEB = 90^{\circ}, \quad \boxed{\times} \therefore \angle B = 40^{\circ},$$

- $\therefore \angle DOE = 140^{\circ}$,
- $\therefore \angle EFD = 70^{\circ}$.

- 20. 解: (1) 把 A (-1, 2) 代入 $y = \frac{k_2}{r}$, 得 $k_2 = -2$.
 - ∴反比例函数的表达式为 $y = \frac{-2}{x}$.
 - B(m, -1) 在反比例函数的图象上, m=2.

2017 数学卷 (嘉兴) 参考答案 共 4 页 第 1 页

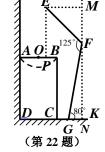
由题意得
$$\begin{cases} -k_1+b=2, \\ 2k_1+b=-1. \end{cases}$$
 解得
$$\begin{cases} k_1=-1, \\ b=1. \end{cases}$$

::一次函数的表达式为 y=-x+1.

- (2) $AB = 3\sqrt{2}$.
 - ① = PA = PB 时, $(n+1)^2 + 4 = (n-2)^2 + 1$, ∵*n*>0, ∴*n*=0(不符合题意, 舍去);
 - ② $\pm AP = AB \text{ ph}, \quad 2^2 + (n+1)^2 = (3\sqrt{2})^2$ $\therefore n > 0$, $\therefore n = -1 + \sqrt{14}$:
 - ③当 BP = BA 时, $1^2 + (n-2)^2 = (3\sqrt{2})^2$ $\therefore n > 0$ $\therefore n = 2 + \sqrt{17}$.

∴
$$n = -1 + \sqrt{14}$$
 或 $n = 2 + \sqrt{17}$.

-----8分

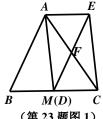

(第20题)

- 21. (1) 月平均气温的最高值为 30.6℃,最低气温为 5.8℃; 相应月份的用电量分别为 124 千瓦时和 110 千瓦时.
 - (2) 当气温较高或较低时,用电量较多;当气温适宜时,用电量较少.
 - (3) 能,中位数刻画了中间水平.(其他回答情况,有理有据可酌情给分)8 分
- 22. 解: (1) 过点 F 作 $FN \perp DK$ 于点 N, 过点 E 作 $EM \perp FN$ 于点 M.
 - :EF+FG=166, FG=100, :EF=66,
 - $\therefore \angle FGK = 80^{\circ}, \quad \therefore FN = 100 \sin 80 \approx 98$

 \mathbb{Z} : $\angle EFG = 125^{\circ}$, $\therefore \angle EFM = 180^{\circ} -125^{\circ} - 10^{\circ} = 45^{\circ}$,

- : $FM = 66\cos 45 = 33\sqrt{2} \approx 46.53$
- $\therefore MN = FN + FM \approx 144.5$.
- ∴他头部 E 点与地面 DK 相距约 144.5cm.
- (2) 过点 E作 $EP \perp AB$ 于点 P, 延长 OB 交 MN 于点 H.
 - AB=48, O 为 AB 的中点, AO=BO=24,
 - : $EM = 66\sin 45 \approx 46.53$, \$\text{\text{\$\mathcal{B}\$}}\$ PH≈46.53. $GN = 100\cos 80 \approx 17$, CG = 15,

- $\therefore OH = 24 + 15 + 17 = 56.$ $OP = OH - PH = 56-46.53 = 9.47 \approx 9.5$.
- ∴他应向前 9.5cm .



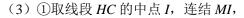
……10分

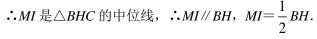
- 23. (1) 证明: ∵*DE*//*AB*, ∴∠*EDC*=∠*ABM*.
 - $: CE //AM, : \angle ECD = \angle ADB,$

又: AM 是 $\triangle ABC$ 的中线,且 D 与 M 重合, $\therefore BD = DC$,

- $\therefore \triangle ABD \cong \triangle EDC$
- ∴AB = ED, $\nextcolor{\textco$
- ∴四边形 ABDE 为平行四边形.

(第23 颞图1)


(2) 结论成立, 理由如下:


过点 M 作 MG//DE 交 EC 干点 G.

- : CE //AM
- ∴四边形 DMGE 为平行四边形,
- ∴ $ED = GM \perp ED // GM$,

由(1)可得AB=GM且AB//GM,

- ∴ $AB = ED \perp AB // ED$.
- :.四边形 ABDE 为平行四边形.

 \mathbb{Z} : $BH \perp AC$, \mathbb{H} BH = AM,

$$\therefore MI = \frac{1}{2}AM, \quad MI \perp AC,$$

 $\therefore \angle CAM = 30^{\circ}$.

②设
$$DH = x$$
, 则 $AH = \sqrt{3}x$. $AD = 2x$.

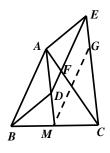
$$\therefore AM = 4 + 2x \qquad \therefore BH = 4 + 2x$$

由 (2) 已证四边形 ABDE 为平行四边形, ∴FD // AB,

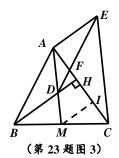
$$\therefore \frac{HF}{HA} = \frac{HD}{HB} , \quad \exists \prod \frac{\sqrt{3}}{\sqrt{3}x} = \frac{x}{4+2x} ,$$

解得 $x=1\pm\sqrt{5}$ (负根不合题意, 舍夫):

$$\therefore DH = 1 + \sqrt{5}$$


24. 解: (1) B (30, 0),

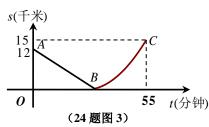
潮头从甲地到乙地的速度= $\frac{12}{30}$ = 0.4 千米/分钟.


- (2) : 潮头的速度为 0.4 千米/分钟,
 - ∴到 11:59 时,潮头已前进 19×0.4=7.6 千米,
 - ∴此时潮头离乙地=12 7.6=4.4 千米.

设小红出发 x 分钟与潮头相遇,

- $\therefore 0.4x + 0.48x = 12 7.6$
- $\therefore x = 5$.
- :. 小红 5 分钟后与潮头相遇.

(第23题图2)


……10分

(3) 把 B (30, 0), C (55, 15) 代入 $s = \frac{1}{125}t^2 + bt + c$,

解得
$$b = -\frac{2}{25}$$
, $c = -\frac{24}{5}$,

$$\therefore s = \frac{1}{125}t^2 - \frac{2}{25}t - \frac{24}{5}.$$

:
$$v_0 = 0.4$$
, : $v = \frac{2}{125}(t - 30) + \frac{2}{5}$.

当潮头的速度达到单车最高速度 0.48 千米/分,即 v=0.48 时,

$$\frac{2}{125}(t-30) + \frac{2}{5} = 0.48$$
, :: $t=35$,

∴
$$\pm t = 35$$
 时, $s = \frac{1}{125}t^2 - \frac{2}{25}t - \frac{24}{5} = \frac{11}{5}$,

∴从 t=35 分钟(12: 15 时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以 0.48 千米/分的速度匀速追赶潮头.

设她离乙地的距离为 s_1 ,则 s_1 与时间t的函数关系式为 $s_1=0.48t+h$ ($t\geq 35$),

当
$$t=35$$
 时, $s_1=s=\frac{11}{5}$,代入得: $h=-\frac{73}{5}$,

$$: s_1 = \frac{12}{25}t - \frac{73}{5},$$

最后潮头与小红相距 1.8 千米时,即 $s-s_1=1.8$,

$$\therefore \frac{1}{125}t^2 - \frac{2}{25}t - \frac{24}{5} - \frac{12}{25}t + \frac{73}{5} = 1.8,$$

解得 $t_1 = 50$, $t_2 = 20$ (不符合题意,舍去)

 $\therefore t = 50$

小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时 6 分钟,

- ∴共需时间为 6+50-30=26 分钟,
- ∴小红与潮头相遇到潮头离她 1.8 千米外共需 26 分钟. ……12 分

【其他不同解法,请酌情给分】